/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapDevice.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkMathPriv.h" #include "SkRegion.h" #include "SkSurface.h" #include "Test.h" #include "sk_tool_utils.h" #if SK_SUPPORT_GPU #include "GrContextFactory.h" #include "SkGpuDevice.h" #else class GrContext; class GrContextFactory; #endif static const int DEV_W = 100, DEV_H = 100; static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H); static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1, DEV_H * SK_Scalar1); static const U8CPU DEV_PAD = 0xee; static SkPMColor getCanvasColor(int x, int y) { SkASSERT(x >= 0 && x < DEV_W); SkASSERT(y >= 0 && y < DEV_H); U8CPU r = x; U8CPU g = y; U8CPU b = 0xc; U8CPU a = 0x0; switch ((x+y) % 5) { case 0: a = 0xff; break; case 1: a = 0x80; break; case 2: a = 0xCC; break; case 3: a = 0x00; break; case 4: a = 0x01; break; } return SkPremultiplyARGBInline(a, r, g, b); } // assumes any premu/.unpremul has been applied static uint32_t packColorType(SkColorType ct, U8CPU a, U8CPU r, U8CPU g, U8CPU b) { uint32_t r32; uint8_t* result = reinterpret_cast<uint8_t*>(&r32); switch (ct) { case kBGRA_8888_SkColorType: result[0] = b; result[1] = g; result[2] = r; result[3] = a; break; case kRGBA_8888_SkColorType: result[0] = r; result[1] = g; result[2] = b; result[3] = a; break; default: SkASSERT(0); return 0; } return r32; } static uint32_t getBitmapColor(int x, int y, int w, SkColorType ct, SkAlphaType at) { int n = y * w + x; U8CPU b = n & 0xff; U8CPU g = (n >> 8) & 0xff; U8CPU r = (n >> 16) & 0xff; U8CPU a = 0; switch ((x+y) % 5) { case 4: a = 0xff; break; case 3: a = 0x80; break; case 2: a = 0xCC; break; case 1: a = 0x01; break; case 0: a = 0x00; break; } if (kPremul_SkAlphaType == at) { r = SkMulDiv255Ceiling(r, a); g = SkMulDiv255Ceiling(g, a); b = SkMulDiv255Ceiling(b, a); } return packColorType(ct, a, r, g , b); } static void fillCanvas(SkCanvas* canvas) { SkBitmap bmp; if (bmp.isNull()) { bmp.allocN32Pixels(DEV_W, DEV_H); for (int y = 0; y < DEV_H; ++y) { for (int x = 0; x < DEV_W; ++x) { *bmp.getAddr32(x, y) = getCanvasColor(x, y); } } } canvas->save(); canvas->setMatrix(SkMatrix::I()); canvas->clipRect(DEV_RECT_S, SkRegion::kReplace_Op); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas->drawBitmap(bmp, 0, 0, &paint); canvas->restore(); } /** * Lucky for us, alpha is always in the same spot (SK_A32_SHIFT), for both RGBA and BGRA. * Thus this routine doesn't need to know the exact colortype */ static uint32_t premul(uint32_t color) { unsigned a = SkGetPackedA32(color); // these next three are not necessarily r,g,b in that order, but they are r,g,b in some order. unsigned c0 = SkGetPackedR32(color); unsigned c1 = SkGetPackedG32(color); unsigned c2 = SkGetPackedB32(color); c0 = SkMulDiv255Ceiling(c0, a); c1 = SkMulDiv255Ceiling(c1, a); c2 = SkMulDiv255Ceiling(c2, a); return SkPackARGB32NoCheck(a, c0, c1, c2); } static SkPMColor convert_to_PMColor(SkColorType ct, SkAlphaType at, uint32_t color) { if (kUnpremul_SkAlphaType == at) { color = premul(color); } switch (ct) { case kRGBA_8888_SkColorType: color = SkSwizzle_RGBA_to_PMColor(color); break; case kBGRA_8888_SkColorType: color = SkSwizzle_BGRA_to_PMColor(color); break; default: SkASSERT(0); break; } return color; } static bool checkPixel(SkPMColor a, SkPMColor b, bool didPremulConversion) { if (!didPremulConversion) { return a == b; } int32_t aA = static_cast<int32_t>(SkGetPackedA32(a)); int32_t aR = static_cast<int32_t>(SkGetPackedR32(a)); int32_t aG = static_cast<int32_t>(SkGetPackedG32(a)); int32_t aB = SkGetPackedB32(a); int32_t bA = static_cast<int32_t>(SkGetPackedA32(b)); int32_t bR = static_cast<int32_t>(SkGetPackedR32(b)); int32_t bG = static_cast<int32_t>(SkGetPackedG32(b)); int32_t bB = static_cast<int32_t>(SkGetPackedB32(b)); return aA == bA && SkAbs32(aR - bR) <= 1 && SkAbs32(aG - bG) <= 1 && SkAbs32(aB - bB) <= 1; } static bool check_write(skiatest::Reporter* reporter, SkCanvas* canvas, const SkBitmap& bitmap, int writeX, int writeY) { const SkImageInfo canvasInfo = canvas->imageInfo(); size_t canvasRowBytes; const uint32_t* canvasPixels; // Can't use canvas->peekPixels(), as we are trying to look at GPU pixels sometimes as well. // At some point this will be unsupported, as we won't allow accessBitmap() to magically call // readPixels for the client. SkBitmap secretDevBitmap; canvas->readPixels(SkIRect::MakeWH(canvasInfo.width(), canvasInfo.height()), &secretDevBitmap); SkAutoLockPixels alp(secretDevBitmap); canvasRowBytes = secretDevBitmap.rowBytes(); canvasPixels = static_cast<const uint32_t*>(secretDevBitmap.getPixels()); if (NULL == canvasPixels) { return false; } if (canvasInfo.width() != DEV_W || canvasInfo.height() != DEV_H || canvasInfo.colorType() != kN32_SkColorType) { return false; } const SkImageInfo bmInfo = bitmap.info(); SkIRect writeRect = SkIRect::MakeXYWH(writeX, writeY, bitmap.width(), bitmap.height()); for (int cy = 0; cy < DEV_H; ++cy) { for (int cx = 0; cx < DEV_W; ++cx) { SkPMColor canvasPixel = canvasPixels[cx]; if (writeRect.contains(cx, cy)) { int bx = cx - writeX; int by = cy - writeY; uint32_t bmpColor8888 = getBitmapColor(bx, by, bitmap.width(), bmInfo.colorType(), bmInfo.alphaType()); bool mul = (kUnpremul_SkAlphaType == bmInfo.alphaType()); SkPMColor bmpPMColor = convert_to_PMColor(bmInfo.colorType(), bmInfo.alphaType(), bmpColor8888); bool check = checkPixel(bmpPMColor, canvasPixel, mul); REPORTER_ASSERT(reporter, check); if (!check) { return false; } } else { bool check; SkPMColor testColor = getCanvasColor(cx, cy); REPORTER_ASSERT(reporter, check = (canvasPixel == testColor)); if (!check) { return false; } } } if (cy != DEV_H -1) { const char* pad = reinterpret_cast<const char*>(canvasPixels + DEV_W); for (size_t px = 0; px < canvasRowBytes - 4 * DEV_W; ++px) { bool check; REPORTER_ASSERT(reporter, check = (pad[px] == static_cast<char>(DEV_PAD))); if (!check) { return false; } } } canvasPixels += canvasRowBytes/4; } return true; } enum DevType { kRaster_DevType, #if SK_SUPPORT_GPU kGpu_BottomLeft_DevType, kGpu_TopLeft_DevType, #endif }; struct CanvasConfig { DevType fDevType; bool fTightRowBytes; }; static const CanvasConfig gCanvasConfigs[] = { {kRaster_DevType, true}, {kRaster_DevType, false}, #if SK_SUPPORT_GPU {kGpu_BottomLeft_DevType, true}, // row bytes has no meaning on gpu devices {kGpu_TopLeft_DevType, true}, // row bytes has no meaning on gpu devices #endif }; #include "SkMallocPixelRef.h" // This is a tricky pattern, because we have to setConfig+rowBytes AND specify // a custom pixelRef (which also has to specify its rowBytes), so we have to be // sure that the two rowBytes match (and the infos match). // static bool allocRowBytes(SkBitmap* bm, const SkImageInfo& info, size_t rowBytes) { if (!bm->setInfo(info, rowBytes)) { return false; } SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, rowBytes, NULL); bm->setPixelRef(pr)->unref(); return true; } static void free_pixels(void* pixels, void* ctx) { sk_free(pixels); } static SkSurface* create_surface(const CanvasConfig& c, GrContext* grCtx) { SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H); switch (c.fDevType) { case kRaster_DevType: { const size_t rowBytes = c.fTightRowBytes ? info.minRowBytes() : 4 * DEV_W + 100; const size_t size = info.getSafeSize(rowBytes); void* pixels = sk_malloc_throw(size); // if rowBytes isn't tight then set the padding to a known value if (!c.fTightRowBytes) { memset(pixels, DEV_PAD, size); } return SkSurface::NewRasterDirectReleaseProc(info, pixels, rowBytes, free_pixels, NULL); } #if SK_SUPPORT_GPU case kGpu_BottomLeft_DevType: case kGpu_TopLeft_DevType: GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = DEV_W; desc.fHeight = DEV_H; desc.fConfig = kSkia8888_GrPixelConfig; desc.fOrigin = kGpu_TopLeft_DevType == c.fDevType ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; GrAutoScratchTexture ast(grCtx, desc, GrContext::kExact_ScratchTexMatch); SkAutoTUnref<GrTexture> tex(ast.detach()); return SkSurface::NewRenderTargetDirect(tex->asRenderTarget()); #endif } return NULL; } static bool setup_bitmap(SkBitmap* bm, SkColorType ct, SkAlphaType at, int w, int h, int tightRB) { size_t rowBytes = tightRB ? 0 : 4 * w + 60; SkImageInfo info = SkImageInfo::Make(w, h, ct, at); if (!allocRowBytes(bm, info, rowBytes)) { return false; } SkAutoLockPixels alp(*bm); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { *bm->getAddr32(x, y) = getBitmapColor(x, y, w, ct, at); } } return true; } static void call_writepixels(SkCanvas* canvas) { const SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); SkPMColor pixel = 0; canvas->writePixels(info, &pixel, sizeof(SkPMColor), 0, 0); } static void test_surface_genid(skiatest::Reporter* reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(100, 100); SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info)); uint32_t genID1 = surface->generationID(); call_writepixels(surface->getCanvas()); uint32_t genID2 = surface->generationID(); REPORTER_ASSERT(reporter, genID1 != genID2); } DEF_GPUTEST(WritePixels, reporter, factory) { test_surface_genid(reporter); SkCanvas canvas; const SkIRect testRects[] = { // entire thing DEV_RECT, // larger on all sides SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10), // fully contained SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4), // outside top right corner SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1), // touching top right corner SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10), }; for (size_t i = 0; i < SK_ARRAY_COUNT(gCanvasConfigs); ++i) { int glCtxTypeCnt = 1; #if SK_SUPPORT_GPU bool isGPUDevice = kGpu_TopLeft_DevType == gCanvasConfigs[i].fDevType || kGpu_BottomLeft_DevType == gCanvasConfigs[i].fDevType; if (isGPUDevice) { glCtxTypeCnt = GrContextFactory::kGLContextTypeCnt; } #endif for (int glCtxType = 0; glCtxType < glCtxTypeCnt; ++glCtxType) { GrContext* context = NULL; #if SK_SUPPORT_GPU if (isGPUDevice) { GrContextFactory::GLContextType type = static_cast<GrContextFactory::GLContextType>(glCtxType); if (!GrContextFactory::IsRenderingGLContext(type)) { continue; } context = factory->get(type); if (NULL == context) { continue; } } #endif SkAutoTUnref<SkSurface> surface(create_surface(gCanvasConfigs[i], context)); SkCanvas& canvas = *surface->getCanvas(); static const struct { SkColorType fColorType; SkAlphaType fAlphaType; } gSrcConfigs[] = { { kRGBA_8888_SkColorType, kPremul_SkAlphaType }, { kRGBA_8888_SkColorType, kUnpremul_SkAlphaType }, { kBGRA_8888_SkColorType, kPremul_SkAlphaType }, { kBGRA_8888_SkColorType, kUnpremul_SkAlphaType }, }; for (size_t r = 0; r < SK_ARRAY_COUNT(testRects); ++r) { const SkIRect& rect = testRects[r]; for (int tightBmp = 0; tightBmp < 2; ++tightBmp) { for (size_t c = 0; c < SK_ARRAY_COUNT(gSrcConfigs); ++c) { const SkColorType ct = gSrcConfigs[c].fColorType; const SkAlphaType at = gSrcConfigs[c].fAlphaType; fillCanvas(&canvas); SkBitmap bmp; REPORTER_ASSERT(reporter, setup_bitmap(&bmp, ct, at, rect.width(), rect.height(), SkToBool(tightBmp))); uint32_t idBefore = surface->generationID(); // sk_tool_utils::write_pixels(&canvas, bmp, rect.fLeft, rect.fTop, ct, at); canvas.writePixels(bmp, rect.fLeft, rect.fTop); uint32_t idAfter = surface->generationID(); REPORTER_ASSERT(reporter, check_write(reporter, &canvas, bmp, rect.fLeft, rect.fTop)); // we should change the genID iff pixels were actually written. SkIRect canvasRect = SkIRect::MakeSize(canvas.getDeviceSize()); SkIRect writeRect = SkIRect::MakeXYWH(rect.fLeft, rect.fTop, bmp.width(), bmp.height()); bool intersects = SkIRect::Intersects(canvasRect, writeRect) ; REPORTER_ASSERT(reporter, intersects == (idBefore != idAfter)); } } } } } }