/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/codec/SkAndroidCodec.h" #include "include/codec/SkCodec.h" #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorSpace.h" #include "include/core/SkData.h" #include "include/core/SkEncodedImageFormat.h" #include "include/core/SkImage.h" #include "include/core/SkImageEncoder.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkImageInfo.h" #include "include/core/SkPixmap.h" #include "include/core/SkPngChunkReader.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkSize.h" #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/core/SkUnPreMultiply.h" #include "include/encode/SkJpegEncoder.h" #include "include/encode/SkPngEncoder.h" #include "include/encode/SkWebpEncoder.h" #include "include/private/SkMalloc.h" #include "include/private/SkTemplates.h" #include "include/third_party/skcms/skcms.h" #include "include/utils/SkFrontBufferedStream.h" #include "include/utils/SkRandom.h" #include "src/codec/SkCodecImageGenerator.h" #include "src/core/SkAutoMalloc.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkMD5.h" #include "src/core/SkMakeUnique.h" #include "src/core/SkStreamPriv.h" #include "tests/FakeStreams.h" #include "tests/Test.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" #include "png.h" #include #include #include #include #include #include #if PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR < 5 // FIXME (scroggo): Google3 needs to be updated to use a newer version of libpng. In // the meantime, we had to break some pieces of SkPngCodec in order to support Google3. // The parts that are broken are likely not used by Google3. #define SK_PNG_DISABLE_TESTS #endif static SkMD5::Digest md5(const SkBitmap& bm) { SkASSERT(bm.getPixels()); SkMD5 md5; size_t rowLen = bm.info().bytesPerPixel() * bm.width(); for (int y = 0; y < bm.height(); ++y) { md5.write(bm.getAddr(0, y), rowLen); } return md5.finish(); } /** * Compute the digest for bm and compare it to a known good digest. * @param r Reporter to assert that bm's digest matches goodDigest. * @param goodDigest The known good digest to compare to. * @param bm The bitmap to test. */ static void compare_to_good_digest(skiatest::Reporter* r, const SkMD5::Digest& goodDigest, const SkBitmap& bm) { SkMD5::Digest digest = md5(bm); REPORTER_ASSERT(r, digest == goodDigest); } /** * Test decoding an SkCodec to a particular SkImageInfo. * * Calling getPixels(info) should return expectedResult, and if goodDigest is non nullptr, * the resulting decode should match. */ template static void test_info(skiatest::Reporter* r, Codec* codec, const SkImageInfo& info, SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) { SkBitmap bm; bm.allocPixels(info); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); if (goodDigest) { compare_to_good_digest(r, *goodDigest, bm); } } SkIRect generate_random_subset(SkRandom* rand, int w, int h) { SkIRect rect; do { rect.fLeft = rand->nextRangeU(0, w); rect.fTop = rand->nextRangeU(0, h); rect.fRight = rand->nextRangeU(0, w); rect.fBottom = rand->nextRangeU(0, h); rect.sort(); } while (rect.isEmpty()); return rect; } static void test_incremental_decode(skiatest::Reporter* r, SkCodec* codec, const SkImageInfo& info, const SkMD5::Digest& goodDigest) { SkBitmap bm; bm.allocPixels(info); REPORTER_ASSERT(r, SkCodec::kSuccess == codec->startIncrementalDecode(info, bm.getPixels(), bm.rowBytes())); REPORTER_ASSERT(r, SkCodec::kSuccess == codec->incrementalDecode()); compare_to_good_digest(r, goodDigest, bm); } // Test in stripes, similar to DM's kStripe_Mode static void test_in_stripes(skiatest::Reporter* r, SkCodec* codec, const SkImageInfo& info, const SkMD5::Digest& goodDigest) { SkBitmap bm; bm.allocPixels(info); bm.eraseColor(SK_ColorYELLOW); const int height = info.height(); // Note that if numStripes does not evenly divide height there will be an extra // stripe. const int numStripes = 4; if (numStripes > height) { // Image is too small. return; } const int stripeHeight = height / numStripes; // Iterate through the image twice. Once to decode odd stripes, and once for even. for (int oddEven = 1; oddEven >= 0; oddEven--) { for (int y = oddEven * stripeHeight; y < height; y += 2 * stripeHeight) { SkIRect subset = SkIRect::MakeLTRB(0, y, info.width(), SkTMin(y + stripeHeight, height)); SkCodec::Options options; options.fSubset = ⊂ if (SkCodec::kSuccess != codec->startIncrementalDecode(info, bm.getAddr(0, y), bm.rowBytes(), &options)) { ERRORF(r, "failed to start incremental decode!\ttop: %i\tbottom%i\n", subset.top(), subset.bottom()); return; } if (SkCodec::kSuccess != codec->incrementalDecode()) { ERRORF(r, "failed incremental decode starting from line %i\n", y); return; } } } compare_to_good_digest(r, goodDigest, bm); } template static void test_codec(skiatest::Reporter* r, const char* path, Codec* codec, SkBitmap& bm, const SkImageInfo& info, const SkISize& size, SkCodec::Result expectedResult, SkMD5::Digest* digest, const SkMD5::Digest* goodDigest) { REPORTER_ASSERT(r, info.dimensions() == size); bm.allocPixels(info); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); *digest = md5(bm); if (goodDigest) { REPORTER_ASSERT(r, *digest == *goodDigest); } { // Test decoding to 565 SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType); if (info.alphaType() == kOpaque_SkAlphaType) { // Decoding to 565 should succeed. SkBitmap bm565; bm565.allocPixels(info565); // This will allow comparison even if the image is incomplete. bm565.eraseColor(SK_ColorBLACK); auto actualResult = codec->getPixels(info565, bm565.getPixels(), bm565.rowBytes()); if (actualResult == expectedResult) { SkMD5::Digest digest565 = md5(bm565); // A request for non-opaque should also succeed. for (auto alpha : { kPremul_SkAlphaType, kUnpremul_SkAlphaType }) { info565 = info565.makeAlphaType(alpha); test_info(r, codec, info565, expectedResult, &digest565); } } else { ERRORF(r, "Decoding %s to 565 failed with result \"%s\"\n\t\t\t\texpected:\"%s\"", path, SkCodec::ResultToString(actualResult), SkCodec::ResultToString(expectedResult)); } } else { test_info(r, codec, info565, SkCodec::kInvalidConversion, nullptr); } } if (codec->getInfo().colorType() == kGray_8_SkColorType) { SkImageInfo grayInfo = codec->getInfo(); SkBitmap grayBm; grayBm.allocPixels(grayInfo); grayBm.eraseColor(SK_ColorBLACK); REPORTER_ASSERT(r, expectedResult == codec->getPixels(grayInfo, grayBm.getPixels(), grayBm.rowBytes())); SkMD5::Digest grayDigest = md5(grayBm); for (auto alpha : { kPremul_SkAlphaType, kUnpremul_SkAlphaType }) { grayInfo = grayInfo.makeAlphaType(alpha); test_info(r, codec, grayInfo, expectedResult, &grayDigest); } } // Verify that re-decoding gives the same result. It is interesting to check this after // a decode to 565, since choosing to decode to 565 may result in some of the decode // options being modified. These options should return to their defaults on another // decode to kN32, so the new digest should match the old digest. test_info(r, codec, info, expectedResult, digest); { // Check alpha type conversions if (info.alphaType() == kOpaque_SkAlphaType) { test_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType), expectedResult, digest); test_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType), expectedResult, digest); } else { // Decoding to opaque should fail test_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType), SkCodec::kInvalidConversion, nullptr); SkAlphaType otherAt = info.alphaType(); if (kPremul_SkAlphaType == otherAt) { otherAt = kUnpremul_SkAlphaType; } else { otherAt = kPremul_SkAlphaType; } // The other non-opaque alpha type should always succeed, but not match. test_info(r, codec, info.makeAlphaType(otherAt), expectedResult, nullptr); } } } static bool supports_partial_scanlines(const char path[]) { static const char* const exts[] = { "jpg", "jpeg", "png", "webp" "JPG", "JPEG", "PNG", "WEBP" }; for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) { if (SkStrEndsWith(path, exts[i])) { return true; } } return false; } // FIXME: Break up this giant function static void check(skiatest::Reporter* r, const char path[], SkISize size, bool supportsScanlineDecoding, bool supportsSubsetDecoding, bool supportsIncomplete, bool supportsNewScanlineDecoding = false) { // If we're testing incomplete decodes, let's run the same test on full decodes. if (supportsIncomplete) { check(r, path, size, supportsScanlineDecoding, supportsSubsetDecoding, false, supportsNewScanlineDecoding); } std::unique_ptr stream(GetResourceAsStream(path)); if (!stream) { return; } std::unique_ptr codec(nullptr); if (supportsIncomplete) { size_t size = stream->getLength(); codec = SkCodec::MakeFromData(SkData::MakeFromStream(stream.get(), 2 * size / 3)); } else { codec = SkCodec::MakeFromStream(std::move(stream)); } if (!codec) { ERRORF(r, "Unable to decode '%s'", path); return; } // Test full image decodes with SkCodec SkMD5::Digest codecDigest; const SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; SkCodec::Result expectedResult = supportsIncomplete ? SkCodec::kIncompleteInput : SkCodec::kSuccess; test_codec(r, path, codec.get(), bm, info, size, expectedResult, &codecDigest, nullptr); // Scanline decoding follows. if (supportsNewScanlineDecoding && !supportsIncomplete) { test_incremental_decode(r, codec.get(), info, codecDigest); // This is only supported by codecs that use incremental decoding to // support subset decodes - png and jpeg (once SkJpegCodec is // converted). if (SkStrEndsWith(path, "png") || SkStrEndsWith(path, "PNG")) { test_in_stripes(r, codec.get(), info, codecDigest); } } // Need to call startScanlineDecode() first. REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); REPORTER_ASSERT(r, !codec->skipScanlines(1)); const SkCodec::Result startResult = codec->startScanlineDecode(info); if (supportsScanlineDecoding) { bm.eraseColor(SK_ColorYELLOW); REPORTER_ASSERT(r, startResult == SkCodec::kSuccess); for (int y = 0; y < info.height(); y++) { const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0); if (!supportsIncomplete) { REPORTER_ASSERT(r, 1 == lines); } } // verify that scanline decoding gives the same result. if (SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()) { compare_to_good_digest(r, codecDigest, bm); } // Cannot continue to decode scanlines beyond the end REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); // Interrupting a scanline decode with a full decode starts from // scratch REPORTER_ASSERT(r, codec->startScanlineDecode(info) == SkCodec::kSuccess); const int lines = codec->getScanlines(bm.getAddr(0, 0), 1, 0); if (!supportsIncomplete) { REPORTER_ASSERT(r, lines == 1); } REPORTER_ASSERT(r, codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes()) == expectedResult); REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); REPORTER_ASSERT(r, codec->skipScanlines(1) == 0); // Test partial scanline decodes if (supports_partial_scanlines(path) && info.width() >= 3) { SkCodec::Options options; int width = info.width(); int height = info.height(); SkIRect subset = SkIRect::MakeXYWH(2 * (width / 3), 0, width / 3, height); options.fSubset = ⊂ const auto partialStartResult = codec->startScanlineDecode(info, &options); REPORTER_ASSERT(r, partialStartResult == SkCodec::kSuccess); for (int y = 0; y < height; y++) { const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0); if (!supportsIncomplete) { REPORTER_ASSERT(r, 1 == lines); } } } } else { REPORTER_ASSERT(r, startResult == SkCodec::kUnimplemented); } // The rest of this function tests decoding subsets, and will decode an arbitrary number of // random subsets. // Do not attempt to decode subsets of an image of only once pixel, since there is no // meaningful subset. if (size.width() * size.height() == 1) { return; } SkRandom rand; SkIRect subset; SkCodec::Options opts; opts.fSubset = ⊂ for (int i = 0; i < 5; i++) { subset = generate_random_subset(&rand, size.width(), size.height()); SkASSERT(!subset.isEmpty()); const bool supported = codec->getValidSubset(&subset); REPORTER_ASSERT(r, supported == supportsSubsetDecoding); SkImageInfo subsetInfo = info.makeWH(subset.width(), subset.height()); SkBitmap bm; bm.allocPixels(subsetInfo); const auto result = codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes(), &opts); if (supportsSubsetDecoding) { if (expectedResult == SkCodec::kSuccess) { REPORTER_ASSERT(r, result == expectedResult); } // Webp is the only codec that supports subsets, and it will have modified the subset // to have even left/top. REPORTER_ASSERT(r, SkIsAlign2(subset.fLeft) && SkIsAlign2(subset.fTop)); } else { // No subsets will work. REPORTER_ASSERT(r, result == SkCodec::kUnimplemented); } } // SkAndroidCodec tests if (supportsScanlineDecoding || supportsSubsetDecoding || supportsNewScanlineDecoding) { std::unique_ptr stream(GetResourceAsStream(path)); if (!stream) { return; } auto androidCodec = SkAndroidCodec::MakeFromCodec(std::move(codec)); if (!androidCodec) { ERRORF(r, "Unable to decode '%s'", path); return; } SkBitmap bm; SkMD5::Digest androidCodecDigest; test_codec(r, path, androidCodec.get(), bm, info, size, expectedResult, &androidCodecDigest, &codecDigest); } if (!supportsIncomplete) { // Test SkCodecImageGenerator std::unique_ptr stream(GetResourceAsStream(path)); sk_sp fullData(SkData::MakeFromStream(stream.get(), stream->getLength())); std::unique_ptr gen( SkCodecImageGenerator::MakeFromEncodedCodec(fullData)); SkBitmap bm; bm.allocPixels(info); REPORTER_ASSERT(r, gen->getPixels(info, bm.getPixels(), bm.rowBytes())); compare_to_good_digest(r, codecDigest, bm); #ifndef SK_PNG_DISABLE_TESTS // Test using SkFrontBufferedStream, as Android does auto bufferedStream = SkFrontBufferedStream::Make( SkMemoryStream::Make(std::move(fullData)), SkCodec::MinBufferedBytesNeeded()); REPORTER_ASSERT(r, bufferedStream); codec = SkCodec::MakeFromStream(std::move(bufferedStream)); REPORTER_ASSERT(r, codec); if (codec) { test_info(r, codec.get(), info, SkCodec::kSuccess, &codecDigest); } #endif } } DEF_TEST(Codec_wbmp, r) { check(r, "images/mandrill.wbmp", SkISize::Make(512, 512), true, false, true); } DEF_TEST(Codec_webp, r) { check(r, "images/baby_tux.webp", SkISize::Make(386, 395), false, true, true); check(r, "images/color_wheel.webp", SkISize::Make(128, 128), false, true, true); check(r, "images/yellow_rose.webp", SkISize::Make(400, 301), false, true, true); } DEF_TEST(Codec_bmp, r) { check(r, "images/randPixels.bmp", SkISize::Make(8, 8), true, false, true); check(r, "images/rle.bmp", SkISize::Make(320, 240), true, false, true); } DEF_TEST(Codec_ico, r) { // FIXME: We are not ready to test incomplete ICOs // These two tests examine interestingly different behavior: // Decodes an embedded BMP image check(r, "images/color_wheel.ico", SkISize::Make(128, 128), true, false, false); // Decodes an embedded PNG image check(r, "images/google_chrome.ico", SkISize::Make(256, 256), false, false, false, true); } DEF_TEST(Codec_gif, r) { check(r, "images/box.gif", SkISize::Make(200, 55), false, false, true, true); check(r, "images/color_wheel.gif", SkISize::Make(128, 128), false, false, true, true); // randPixels.gif is too small to test incomplete check(r, "images/randPixels.gif", SkISize::Make(8, 8), false, false, false, true); } DEF_TEST(Codec_jpg, r) { check(r, "images/CMYK.jpg", SkISize::Make(642, 516), true, false, true); check(r, "images/color_wheel.jpg", SkISize::Make(128, 128), true, false, true); // grayscale.jpg is too small to test incomplete check(r, "images/grayscale.jpg", SkISize::Make(128, 128), true, false, false); check(r, "images/mandrill_512_q075.jpg", SkISize::Make(512, 512), true, false, true); // randPixels.jpg is too small to test incomplete check(r, "images/randPixels.jpg", SkISize::Make(8, 8), true, false, false); } DEF_TEST(Codec_png, r) { check(r, "images/arrow.png", SkISize::Make(187, 312), false, false, true, true); check(r, "images/baby_tux.png", SkISize::Make(240, 246), false, false, true, true); check(r, "images/color_wheel.png", SkISize::Make(128, 128), false, false, true, true); // half-transparent-white-pixel.png is too small to test incomplete check(r, "images/half-transparent-white-pixel.png", SkISize::Make(1, 1), false, false, false, true); check(r, "images/mandrill_128.png", SkISize::Make(128, 128), false, false, true, true); // mandrill_16.png is too small (relative to embedded sRGB profile) to test incomplete check(r, "images/mandrill_16.png", SkISize::Make(16, 16), false, false, false, true); check(r, "images/mandrill_256.png", SkISize::Make(256, 256), false, false, true, true); check(r, "images/mandrill_32.png", SkISize::Make(32, 32), false, false, true, true); check(r, "images/mandrill_512.png", SkISize::Make(512, 512), false, false, true, true); check(r, "images/mandrill_64.png", SkISize::Make(64, 64), false, false, true, true); check(r, "images/plane.png", SkISize::Make(250, 126), false, false, true, true); check(r, "images/plane_interlaced.png", SkISize::Make(250, 126), false, false, true, true); check(r, "images/randPixels.png", SkISize::Make(8, 8), false, false, true, true); check(r, "images/yellow_rose.png", SkISize::Make(400, 301), false, false, true, true); } // Disable RAW tests for Win32. #if defined(SK_CODEC_DECODES_RAW) && (!defined(_WIN32)) DEF_TEST(Codec_raw, r) { check(r, "images/sample_1mp.dng", SkISize::Make(600, 338), false, false, false); check(r, "images/sample_1mp_rotated.dng", SkISize::Make(600, 338), false, false, false); check(r, "images/dng_with_preview.dng", SkISize::Make(600, 338), true, false, false); } #endif static void test_invalid_stream(skiatest::Reporter* r, const void* stream, size_t len) { // Neither of these calls should return a codec. Bots should catch us if we leaked anything. REPORTER_ASSERT(r, !SkCodec::MakeFromStream( skstd::make_unique(stream, len, false))); REPORTER_ASSERT(r, !SkAndroidCodec::MakeFromStream( skstd::make_unique(stream, len, false))); } // Ensure that SkCodec::NewFromStream handles freeing the passed in SkStream, // even on failure. Test some bad streams. DEF_TEST(Codec_leaks, r) { // No codec should claim this as their format, so this tests SkCodec::NewFromStream. const char nonSupportedStream[] = "hello world"; // The other strings should look like the beginning of a file type, so we'll call some // internal version of NewFromStream, which must also delete the stream on failure. const unsigned char emptyPng[] = { 0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a }; const unsigned char emptyJpeg[] = { 0xFF, 0xD8, 0xFF }; const char emptyWebp[] = "RIFF1234WEBPVP"; const char emptyBmp[] = { 'B', 'M' }; const char emptyIco[] = { '\x00', '\x00', '\x01', '\x00' }; const char emptyGif[] = "GIFVER"; test_invalid_stream(r, nonSupportedStream, sizeof(nonSupportedStream)); test_invalid_stream(r, emptyPng, sizeof(emptyPng)); test_invalid_stream(r, emptyJpeg, sizeof(emptyJpeg)); test_invalid_stream(r, emptyWebp, sizeof(emptyWebp)); test_invalid_stream(r, emptyBmp, sizeof(emptyBmp)); test_invalid_stream(r, emptyIco, sizeof(emptyIco)); test_invalid_stream(r, emptyGif, sizeof(emptyGif)); } DEF_TEST(Codec_null, r) { // Attempting to create an SkCodec or an SkAndroidCodec with null should not // crash. REPORTER_ASSERT(r, !SkCodec::MakeFromStream(nullptr)); REPORTER_ASSERT(r, !SkAndroidCodec::MakeFromStream(nullptr)); } static void test_dimensions(skiatest::Reporter* r, const char path[]) { // Create the codec from the resource file std::unique_ptr stream(GetResourceAsStream(path)); if (!stream) { return; } std::unique_ptr codec(SkAndroidCodec::MakeFromStream(std::move(stream))); if (!codec) { ERRORF(r, "Unable to create codec '%s'", path); return; } // Check that the decode is successful for a variety of scales for (int sampleSize = 1; sampleSize < 32; sampleSize++) { // Scale the output dimensions SkISize scaledDims = codec->getSampledDimensions(sampleSize); SkImageInfo scaledInfo = codec->getInfo() .makeWH(scaledDims.width(), scaledDims.height()) .makeColorType(kN32_SkColorType); // Set up for the decode size_t rowBytes = scaledDims.width() * sizeof(SkPMColor); size_t totalBytes = scaledInfo.computeByteSize(rowBytes); SkAutoTMalloc pixels(totalBytes); SkAndroidCodec::AndroidOptions options; options.fSampleSize = sampleSize; SkCodec::Result result = codec->getAndroidPixels(scaledInfo, pixels.get(), rowBytes, &options); REPORTER_ASSERT(r, SkCodec::kSuccess == result); } } // Ensure that onGetScaledDimensions returns valid image dimensions to use for decodes DEF_TEST(Codec_Dimensions, r) { // JPG test_dimensions(r, "images/CMYK.jpg"); test_dimensions(r, "images/color_wheel.jpg"); test_dimensions(r, "images/grayscale.jpg"); test_dimensions(r, "images/mandrill_512_q075.jpg"); test_dimensions(r, "images/randPixels.jpg"); // Decoding small images with very large scaling factors is a potential // source of bugs and crashes. We disable these tests in Gold because // tiny images are not very useful to look at. // Here we make sure that we do not crash or access illegal memory when // performing scaled decodes on small images. test_dimensions(r, "images/1x1.png"); test_dimensions(r, "images/2x2.png"); test_dimensions(r, "images/3x3.png"); test_dimensions(r, "images/3x1.png"); test_dimensions(r, "images/1x1.png"); test_dimensions(r, "images/16x1.png"); test_dimensions(r, "images/1x16.png"); test_dimensions(r, "images/mandrill_16.png"); // RAW // Disable RAW tests for Win32. #if defined(SK_CODEC_DECODES_RAW) && (!defined(_WIN32)) test_dimensions(r, "images/sample_1mp.dng"); test_dimensions(r, "images/sample_1mp_rotated.dng"); test_dimensions(r, "images/dng_with_preview.dng"); #endif } static void test_invalid(skiatest::Reporter* r, const char path[]) { auto data = GetResourceAsData(path); if (!data) { ERRORF(r, "Failed to get resource %s", path); return; } REPORTER_ASSERT(r, !SkCodec::MakeFromData(data)); } DEF_TEST(Codec_Empty, r) { if (GetResourcePath().isEmpty()) { return; } // Test images that should not be able to create a codec test_invalid(r, "empty_images/zero-dims.gif"); test_invalid(r, "empty_images/zero-embedded.ico"); test_invalid(r, "empty_images/zero-width.bmp"); test_invalid(r, "empty_images/zero-height.bmp"); test_invalid(r, "empty_images/zero-width.jpg"); test_invalid(r, "empty_images/zero-height.jpg"); test_invalid(r, "empty_images/zero-width.png"); test_invalid(r, "empty_images/zero-height.png"); test_invalid(r, "empty_images/zero-width.wbmp"); test_invalid(r, "empty_images/zero-height.wbmp"); // This image is an ico with an embedded mask-bmp. This is illegal. test_invalid(r, "invalid_images/mask-bmp-ico.ico"); // It is illegal for a webp frame to not be fully contained by the canvas. test_invalid(r, "invalid_images/invalid-offset.webp"); #if defined(SK_CODEC_DECODES_RAW) && (!defined(_WIN32)) test_invalid(r, "empty_images/zero_height.tiff"); #endif test_invalid(r, "invalid_images/b37623797.ico"); test_invalid(r, "invalid_images/osfuzz6295.webp"); test_invalid(r, "invalid_images/osfuzz6288.bmp"); test_invalid(r, "invalid_images/ossfuzz6347"); } #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED #ifndef SK_PNG_DISABLE_TESTS // reading chunks does not work properly with older versions. // It does not appear that anyone in Google3 is reading chunks. static void codex_test_write_fn(png_structp png_ptr, png_bytep data, png_size_t len) { SkWStream* sk_stream = (SkWStream*)png_get_io_ptr(png_ptr); if (!sk_stream->write(data, len)) { png_error(png_ptr, "sk_write_fn Error!"); } } DEF_TEST(Codec_pngChunkReader, r) { // Create a dummy bitmap. Use unpremul RGBA for libpng. SkBitmap bm; const int w = 1; const int h = 1; const SkImageInfo bmInfo = SkImageInfo::Make(w, h, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType); bm.setInfo(bmInfo); bm.allocPixels(); bm.eraseColor(SK_ColorBLUE); SkMD5::Digest goodDigest = md5(bm); // Write to a png file. png_structp png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); REPORTER_ASSERT(r, png); if (!png) { return; } png_infop info = png_create_info_struct(png); REPORTER_ASSERT(r, info); if (!info) { png_destroy_write_struct(&png, nullptr); return; } if (setjmp(png_jmpbuf(png))) { ERRORF(r, "failed writing png"); png_destroy_write_struct(&png, &info); return; } SkDynamicMemoryWStream wStream; png_set_write_fn(png, (void*) (&wStream), codex_test_write_fn, nullptr); png_set_IHDR(png, info, (png_uint_32)w, (png_uint_32)h, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); // Create some chunks that match the Android framework's use. static png_unknown_chunk gUnknowns[] = { { "npOl", (png_byte*)"outline", sizeof("outline"), PNG_HAVE_IHDR }, { "npLb", (png_byte*)"layoutBounds", sizeof("layoutBounds"), PNG_HAVE_IHDR }, { "npTc", (png_byte*)"ninePatchData", sizeof("ninePatchData"), PNG_HAVE_IHDR }, }; png_set_keep_unknown_chunks(png, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"npOl\0npLb\0npTc\0", 3); png_set_unknown_chunks(png, info, gUnknowns, SK_ARRAY_COUNT(gUnknowns)); #if PNG_LIBPNG_VER < 10600 /* Deal with unknown chunk location bug in 1.5.x and earlier */ png_set_unknown_chunk_location(png, info, 0, PNG_HAVE_IHDR); png_set_unknown_chunk_location(png, info, 1, PNG_HAVE_IHDR); #endif png_write_info(png, info); for (int j = 0; j < h; j++) { png_bytep row = (png_bytep)(bm.getAddr(0, j)); png_write_rows(png, &row, 1); } png_write_end(png, info); png_destroy_write_struct(&png, &info); class ChunkReader : public SkPngChunkReader { public: ChunkReader(skiatest::Reporter* r) : fReporter(r) { this->reset(); } bool readChunk(const char tag[], const void* data, size_t length) override { for (size_t i = 0; i < SK_ARRAY_COUNT(gUnknowns); ++i) { if (!strcmp(tag, (const char*) gUnknowns[i].name)) { // Tag matches. This should have been the first time we see it. REPORTER_ASSERT(fReporter, !fSeen[i]); fSeen[i] = true; // Data and length should match REPORTER_ASSERT(fReporter, length == gUnknowns[i].size); REPORTER_ASSERT(fReporter, !strcmp((const char*) data, (const char*) gUnknowns[i].data)); return true; } } ERRORF(fReporter, "Saw an unexpected unknown chunk."); return true; } bool allHaveBeenSeen() { bool ret = true; for (auto seen : fSeen) { ret &= seen; } return ret; } void reset() { sk_bzero(fSeen, sizeof(fSeen)); } private: skiatest::Reporter* fReporter; // Unowned bool fSeen[3]; }; ChunkReader chunkReader(r); // Now read the file with SkCodec. std::unique_ptr codec(SkCodec::MakeFromData(wStream.detachAsData(), &chunkReader)); REPORTER_ASSERT(r, codec); if (!codec) { return; } // Now compare to the original. SkBitmap decodedBm; decodedBm.setInfo(codec->getInfo()); decodedBm.allocPixels(); SkCodec::Result result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(), decodedBm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); if (decodedBm.colorType() != bm.colorType()) { SkBitmap tmp; bool success = ToolUtils::copy_to(&tmp, bm.colorType(), decodedBm); REPORTER_ASSERT(r, success); if (!success) { return; } tmp.swap(decodedBm); } compare_to_good_digest(r, goodDigest, decodedBm); REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen()); // Decoding again will read the chunks again. chunkReader.reset(); REPORTER_ASSERT(r, !chunkReader.allHaveBeenSeen()); result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(), decodedBm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen()); } #endif // SK_PNG_DISABLE_TESTS #endif // PNG_READ_UNKNOWN_CHUNKS_SUPPORTED // Stream that can only peek up to a limit class LimitedPeekingMemStream : public SkStream { public: LimitedPeekingMemStream(sk_sp data, size_t limit) : fStream(std::move(data)) , fLimit(limit) {} size_t peek(void* buf, size_t bytes) const override { return fStream.peek(buf, SkTMin(bytes, fLimit)); } size_t read(void* buf, size_t bytes) override { return fStream.read(buf, bytes); } bool rewind() override { return fStream.rewind(); } bool isAtEnd() const override { return fStream.isAtEnd(); } private: SkMemoryStream fStream; const size_t fLimit; }; // Disable RAW tests for Win32. #if defined(SK_CODEC_DECODES_RAW) && (!defined(_WIN32)) // Test that the RawCodec works also for not asset stream. This will test the code path using // SkRawBufferedStream instead of SkRawAssetStream. DEF_TEST(Codec_raw_notseekable, r) { constexpr char path[] = "images/dng_with_preview.dng"; sk_sp data(GetResourceAsData(path)); if (!data) { SkDebugf("Missing resource '%s'\n", path); return; } std::unique_ptr codec(SkCodec::MakeFromStream( skstd::make_unique(std::move(data)))); REPORTER_ASSERT(r, codec); test_info(r, codec.get(), codec->getInfo(), SkCodec::kSuccess, nullptr); } #endif // Test that even if webp_parse_header fails to peek enough, it will fall back to read() // + rewind() and succeed. DEF_TEST(Codec_webp_peek, r) { constexpr char path[] = "images/baby_tux.webp"; auto data = GetResourceAsData(path); if (!data) { SkDebugf("Missing resource '%s'\n", path); return; } // The limit is less than webp needs to peek or read. std::unique_ptr codec(SkCodec::MakeFromStream( skstd::make_unique(data, 25))); REPORTER_ASSERT(r, codec); test_info(r, codec.get(), codec->getInfo(), SkCodec::kSuccess, nullptr); // Similarly, a stream which does not peek should still succeed. codec = SkCodec::MakeFromStream(skstd::make_unique(data, 0)); REPORTER_ASSERT(r, codec); test_info(r, codec.get(), codec->getInfo(), SkCodec::kSuccess, nullptr); } // SkCodec's wbmp decoder was initially unnecessarily restrictive. // It required the second byte to be zero. The wbmp specification allows // a couple of bits to be 1 (so long as they do not overlap with 0x9F). // Test that SkCodec now supports an image with these bits set. DEF_TEST(Codec_wbmp_restrictive, r) { const char* path = "images/mandrill.wbmp"; std::unique_ptr stream(GetResourceAsStream(path)); if (!stream) { return; } // Modify the stream to contain a second byte with some bits set. auto data = SkCopyStreamToData(stream.get()); uint8_t* writeableData = static_cast(data->writable_data()); writeableData[1] = static_cast(~0x9F); // SkCodec should support this. std::unique_ptr codec(SkCodec::MakeFromData(data)); REPORTER_ASSERT(r, codec); if (!codec) { return; } test_info(r, codec.get(), codec->getInfo(), SkCodec::kSuccess, nullptr); } // wbmp images have a header that can be arbitrarily large, depending on the // size of the image. We cap the size at 65535, meaning we only need to look at // 8 bytes to determine whether we can read the image. This is important // because SkCodec only passes a limited number of bytes to SkWbmpCodec to // determine whether the image is a wbmp. DEF_TEST(Codec_wbmp_max_size, r) { const unsigned char maxSizeWbmp[] = { 0x00, 0x00, // Header 0x83, 0xFF, 0x7F, // W: 65535 0x83, 0xFF, 0x7F }; // H: 65535 std::unique_ptr stream(new SkMemoryStream(maxSizeWbmp, sizeof(maxSizeWbmp), false)); std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); REPORTER_ASSERT(r, codec); if (!codec) return; REPORTER_ASSERT(r, codec->getInfo().width() == 65535); REPORTER_ASSERT(r, codec->getInfo().height() == 65535); // Now test an image which is too big. Any image with a larger header (i.e. // has bigger width/height) is also too big. const unsigned char tooBigWbmp[] = { 0x00, 0x00, // Header 0x84, 0x80, 0x00, // W: 65536 0x84, 0x80, 0x00 }; // H: 65536 stream.reset(new SkMemoryStream(tooBigWbmp, sizeof(tooBigWbmp), false)); codec = SkCodec::MakeFromStream(std::move(stream)); REPORTER_ASSERT(r, !codec); } DEF_TEST(Codec_jpeg_rewind, r) { const char* path = "images/mandrill_512_q075.jpg"; sk_sp data(GetResourceAsData(path)); if (!data) { return; } data = SkData::MakeSubset(data.get(), 0, data->size() / 2); std::unique_ptr codec(SkAndroidCodec::MakeFromData(data)); if (!codec) { ERRORF(r, "Unable to create codec '%s'.", path); return; } const int width = codec->getInfo().width(); const int height = codec->getInfo().height(); size_t rowBytes = sizeof(SkPMColor) * width; SkAutoMalloc pixelStorage(height * rowBytes); // Perform a sampled decode. SkAndroidCodec::AndroidOptions opts; opts.fSampleSize = 12; auto sampledInfo = codec->getInfo().makeWH(width / 12, height / 12); auto result = codec->getAndroidPixels(sampledInfo, pixelStorage.get(), rowBytes, &opts); REPORTER_ASSERT(r, SkCodec::kIncompleteInput == result); // Rewind the codec and perform a full image decode. result = codec->getPixels(codec->getInfo(), pixelStorage.get(), rowBytes); REPORTER_ASSERT(r, SkCodec::kIncompleteInput == result); // Now perform a subset decode. { opts.fSampleSize = 1; SkIRect subset = SkIRect::MakeWH(100, 100); opts.fSubset = ⊂ result = codec->getAndroidPixels(codec->getInfo().makeWH(100, 100), pixelStorage.get(), rowBytes, &opts); // Though we only have half the data, it is enough to decode this subset. REPORTER_ASSERT(r, SkCodec::kSuccess == result); } // Perform another full image decode. ASAN will detect if we look at the subset when it is // out of scope. This would happen if we depend on the old state in the codec. // This tests two layers of bugs: both SkJpegCodec::readRows and SkCodec::fillIncompleteImage // used to look at the old subset. opts.fSubset = nullptr; result = codec->getAndroidPixels(codec->getInfo(), pixelStorage.get(), rowBytes, &opts); REPORTER_ASSERT(r, SkCodec::kIncompleteInput == result); } static void check_color_xform(skiatest::Reporter* r, const char* path) { std::unique_ptr codec(SkAndroidCodec::MakeFromStream(GetResourceAsStream(path))); SkAndroidCodec::AndroidOptions opts; opts.fSampleSize = 3; const int subsetWidth = codec->getInfo().width() / 2; const int subsetHeight = codec->getInfo().height() / 2; SkIRect subset = SkIRect::MakeWH(subsetWidth, subsetHeight); opts.fSubset = ⊂ const int dstWidth = subsetWidth / opts.fSampleSize; const int dstHeight = subsetHeight / opts.fSampleSize; auto colorSpace = SkColorSpace::MakeRGB(SkNamedTransferFn::k2Dot2, SkNamedGamut::kAdobeRGB); SkImageInfo dstInfo = codec->getInfo().makeWH(dstWidth, dstHeight) .makeColorType(kN32_SkColorType) .makeColorSpace(colorSpace); size_t rowBytes = dstInfo.minRowBytes(); SkAutoMalloc pixelStorage(dstInfo.computeByteSize(rowBytes)); SkCodec::Result result = codec->getAndroidPixels(dstInfo, pixelStorage.get(), rowBytes, &opts); REPORTER_ASSERT(r, SkCodec::kSuccess == result); } DEF_TEST(Codec_ColorXform, r) { check_color_xform(r, "images/mandrill_512_q075.jpg"); check_color_xform(r, "images/mandrill_512.png"); } static bool color_type_match(SkColorType origColorType, SkColorType codecColorType) { switch (origColorType) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: return kRGBA_8888_SkColorType == codecColorType || kBGRA_8888_SkColorType == codecColorType; default: return origColorType == codecColorType; } } static bool alpha_type_match(SkAlphaType origAlphaType, SkAlphaType codecAlphaType) { switch (origAlphaType) { case kUnpremul_SkAlphaType: case kPremul_SkAlphaType: return kUnpremul_SkAlphaType == codecAlphaType || kPremul_SkAlphaType == codecAlphaType; default: return origAlphaType == codecAlphaType; } } static void check_round_trip(skiatest::Reporter* r, SkCodec* origCodec, const SkImageInfo& info) { SkBitmap bm1; bm1.allocPixels(info); SkCodec::Result result = origCodec->getPixels(info, bm1.getPixels(), bm1.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); // Encode the image to png. auto data = SkEncodeBitmap(bm1, SkEncodedImageFormat::kPNG, 100); std::unique_ptr codec(SkCodec::MakeFromData(data)); REPORTER_ASSERT(r, color_type_match(info.colorType(), codec->getInfo().colorType())); REPORTER_ASSERT(r, alpha_type_match(info.alphaType(), codec->getInfo().alphaType())); SkBitmap bm2; bm2.allocPixels(info); result = codec->getPixels(info, bm2.getPixels(), bm2.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); REPORTER_ASSERT(r, md5(bm1) == md5(bm2)); } DEF_TEST(Codec_PngRoundTrip, r) { auto codec = SkCodec::MakeFromStream(GetResourceAsStream("images/mandrill_512_q075.jpg")); SkColorType colorTypesOpaque[] = { kRGB_565_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType }; for (SkColorType colorType : colorTypesOpaque) { SkImageInfo newInfo = codec->getInfo().makeColorType(colorType); check_round_trip(r, codec.get(), newInfo); } codec = SkCodec::MakeFromStream(GetResourceAsStream("images/grayscale.jpg")); check_round_trip(r, codec.get(), codec->getInfo()); codec = SkCodec::MakeFromStream(GetResourceAsStream("images/yellow_rose.png")); SkColorType colorTypesWithAlpha[] = { kRGBA_8888_SkColorType, kBGRA_8888_SkColorType }; SkAlphaType alphaTypes[] = { kUnpremul_SkAlphaType, kPremul_SkAlphaType }; for (SkColorType colorType : colorTypesWithAlpha) { for (SkAlphaType alphaType : alphaTypes) { // Set color space to nullptr because color correct premultiplies do not round trip. SkImageInfo newInfo = codec->getInfo().makeColorType(colorType) .makeAlphaType(alphaType) .makeColorSpace(nullptr); check_round_trip(r, codec.get(), newInfo); } } codec = SkCodec::MakeFromStream(GetResourceAsStream("images/index8.png")); for (SkAlphaType alphaType : alphaTypes) { SkImageInfo newInfo = codec->getInfo().makeAlphaType(alphaType) .makeColorSpace(nullptr); check_round_trip(r, codec.get(), newInfo); } } static void test_conversion_possible(skiatest::Reporter* r, const char* path, bool supportsScanlineDecoder, bool supportsIncrementalDecoder) { std::unique_ptr stream(GetResourceAsStream(path)); if (!stream) { return; } std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); if (!codec) { ERRORF(r, "failed to create a codec for %s", path); return; } SkImageInfo infoF16 = codec->getInfo().makeColorType(kRGBA_F16_SkColorType); SkBitmap bm; bm.allocPixels(infoF16); SkCodec::Result result = codec->getPixels(infoF16, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); result = codec->startScanlineDecode(infoF16); if (supportsScanlineDecoder) { REPORTER_ASSERT(r, SkCodec::kSuccess == result); } else { REPORTER_ASSERT(r, SkCodec::kUnimplemented == result || SkCodec::kSuccess == result); } result = codec->startIncrementalDecode(infoF16, bm.getPixels(), bm.rowBytes()); if (supportsIncrementalDecoder) { REPORTER_ASSERT(r, SkCodec::kSuccess == result); } else { REPORTER_ASSERT(r, SkCodec::kUnimplemented == result || SkCodec::kSuccess == result); } infoF16 = infoF16.makeColorSpace(infoF16.colorSpace()->makeLinearGamma()); result = codec->getPixels(infoF16, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); result = codec->startScanlineDecode(infoF16); if (supportsScanlineDecoder) { REPORTER_ASSERT(r, SkCodec::kSuccess == result); } else { REPORTER_ASSERT(r, SkCodec::kUnimplemented == result); } result = codec->startIncrementalDecode(infoF16, bm.getPixels(), bm.rowBytes()); if (supportsIncrementalDecoder) { REPORTER_ASSERT(r, SkCodec::kSuccess == result); } else { REPORTER_ASSERT(r, SkCodec::kUnimplemented == result); } } DEF_TEST(Codec_F16ConversionPossible, r) { test_conversion_possible(r, "images/color_wheel.webp", false, false); test_conversion_possible(r, "images/mandrill_512_q075.jpg", true, false); test_conversion_possible(r, "images/yellow_rose.png", false, true); } static void decode_frame(skiatest::Reporter* r, SkCodec* codec, size_t frame) { SkBitmap bm; auto info = codec->getInfo().makeColorType(kN32_SkColorType); bm.allocPixels(info); SkCodec::Options opts; opts.fFrameIndex = frame; REPORTER_ASSERT(r, SkCodec::kSuccess == codec->getPixels(info, bm.getPixels(), bm.rowBytes(), &opts)); } // For an animated GIF, we should only read enough to decode frame 0 if the // client never calls getFrameInfo and only decodes frame 0. DEF_TEST(Codec_skipFullParse, r) { auto path = "images/test640x479.gif"; auto streamObj = GetResourceAsStream(path); if (!streamObj) { return; } SkStream* stream = streamObj.get(); // Note that we cheat and hold on to the stream pointer, but SkCodec will // take ownership. We will not refer to the stream after the SkCodec // deletes it. std::unique_ptr codec(SkCodec::MakeFromStream(std::move(streamObj))); if (!codec) { ERRORF(r, "Failed to create codec for %s", path); return; } REPORTER_ASSERT(r, stream->hasPosition()); const size_t sizePosition = stream->getPosition(); REPORTER_ASSERT(r, stream->hasLength() && sizePosition < stream->getLength()); // This should read more of the stream, but not the whole stream. decode_frame(r, codec.get(), 0); const size_t positionAfterFirstFrame = stream->getPosition(); REPORTER_ASSERT(r, positionAfterFirstFrame > sizePosition && positionAfterFirstFrame < stream->getLength()); // There is more data in the stream. auto frameInfo = codec->getFrameInfo(); REPORTER_ASSERT(r, frameInfo.size() == 4); REPORTER_ASSERT(r, stream->getPosition() > positionAfterFirstFrame); } // Only rewinds up to a limit. class LimitedRewindingStream : public SkStream { public: static std::unique_ptr Make(const char path[], size_t limit) { auto stream = GetResourceAsStream(path); if (!stream) { return nullptr; } return std::unique_ptr(new LimitedRewindingStream(std::move(stream), limit)); } size_t read(void* buffer, size_t size) override { const size_t bytes = fStream->read(buffer, size); fPosition += bytes; return bytes; } bool isAtEnd() const override { return fStream->isAtEnd(); } bool rewind() override { if (fPosition <= fLimit && fStream->rewind()) { fPosition = 0; return true; } return false; } private: std::unique_ptr fStream; const size_t fLimit; size_t fPosition; LimitedRewindingStream(std::unique_ptr stream, size_t limit) : fStream(std::move(stream)) , fLimit(limit) , fPosition(0) { SkASSERT(fStream); } }; DEF_TEST(Codec_fallBack, r) { // SkAndroidCodec needs to be able to fall back to scanline decoding // if incremental decoding does not work. Make sure this does not // require a rewind. // Formats that currently do not support incremental decoding auto files = { "images/CMYK.jpg", "images/color_wheel.ico", "images/mandrill.wbmp", "images/randPixels.bmp", }; for (auto file : files) { auto stream = LimitedRewindingStream::Make(file, SkCodec::MinBufferedBytesNeeded()); if (!stream) { SkDebugf("Missing resources (%s). Set --resourcePath.\n", file); return; } std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); if (!codec) { ERRORF(r, "Failed to create codec for %s,", file); continue; } SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); if (SkCodec::kUnimplemented != codec->startIncrementalDecode(info, bm.getPixels(), bm.rowBytes())) { ERRORF(r, "Is scanline decoding now implemented for %s?", file); continue; } // Scanline decoding should not require a rewind. SkCodec::Result result = codec->startScanlineDecode(info); if (SkCodec::kSuccess != result) { ERRORF(r, "Scanline decoding failed for %s with %i", file, result); } } } // This test verifies that we fixed an assert statement that fired when reusing a png codec // after scaling. DEF_TEST(Codec_reusePng, r) { std::unique_ptr stream(GetResourceAsStream("images/plane.png")); if (!stream) { return; } std::unique_ptr codec(SkAndroidCodec::MakeFromStream(std::move(stream))); if (!codec) { ERRORF(r, "Failed to create codec\n"); return; } SkAndroidCodec::AndroidOptions opts; opts.fSampleSize = 5; auto size = codec->getSampledDimensions(opts.fSampleSize); auto info = codec->getInfo().makeWH(size.fWidth, size.fHeight).makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); auto result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes(), &opts); REPORTER_ASSERT(r, result == SkCodec::kSuccess); info = codec->getInfo().makeColorType(kN32_SkColorType); bm.allocPixels(info); opts.fSampleSize = 1; result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes(), &opts); REPORTER_ASSERT(r, result == SkCodec::kSuccess); } DEF_TEST(Codec_rowsDecoded, r) { auto file = "images/plane_interlaced.png"; std::unique_ptr stream(GetResourceAsStream(file)); if (!stream) { return; } // This is enough to read the header etc, but no rows. std::unique_ptr codec(SkCodec::MakeFromData(SkData::MakeFromStream(stream.get(), 99))); if (!codec) { ERRORF(r, "Failed to create codec\n"); return; } auto info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); auto result = codec->startIncrementalDecode(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); // This is an arbitrary value. The important fact is that it is not zero, and rowsDecoded // should get set to zero by incrementalDecode. int rowsDecoded = 77; result = codec->incrementalDecode(&rowsDecoded); REPORTER_ASSERT(r, result == SkCodec::kIncompleteInput); REPORTER_ASSERT(r, rowsDecoded == 0); } static void test_invalid_images(skiatest::Reporter* r, const char* path, SkCodec::Result expectedResult) { auto stream = GetResourceAsStream(path); if (!stream) { return; } std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); REPORTER_ASSERT(r, codec); test_info(r, codec.get(), codec->getInfo().makeColorType(kN32_SkColorType), expectedResult, nullptr); } DEF_TEST(Codec_InvalidImages, r) { // ASAN will complain if there is an issue. test_invalid_images(r, "invalid_images/skbug5887.gif", SkCodec::kErrorInInput); test_invalid_images(r, "invalid_images/many-progressive-scans.jpg", SkCodec::kInvalidInput); test_invalid_images(r, "invalid_images/b33251605.bmp", SkCodec::kIncompleteInput); test_invalid_images(r, "invalid_images/bad_palette.png", SkCodec::kInvalidInput); } static void test_invalid_header(skiatest::Reporter* r, const char* path) { auto data = GetResourceAsData(path); if (!data) { return; } std::unique_ptr stream(new SkMemoryStream(std::move(data))); if (!stream) { return; } std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); REPORTER_ASSERT(r, !codec); } DEF_TEST(Codec_InvalidHeader, r) { test_invalid_header(r, "invalid_images/int_overflow.ico"); // These files report values that have caused problems with SkFILEStreams. // They are invalid, and should not create SkCodecs. test_invalid_header(r, "invalid_images/b33651913.bmp"); test_invalid_header(r, "invalid_images/b34778578.bmp"); } /* For the Codec_InvalidAnimated test, immediately below, resources/invalid_images/skbug6046.gif is: 00000000: 4749 4638 3961 2000 0000 0000 002c ff00 GIF89a ......,.. 00000010: 7400 0600 0000 4001 0021 f904 0a00 0000 t.....@..!...... 00000020: 002c ff00 0000 ff00 7400 0606 0606 0601 .,......t....... 00000030: 0021 f904 0000 0000 002c ff00 0000 ffcc .!.......,...... 00000040: 1b36 5266 deba 543d .6Rf..T= It nominally contains 3 frames, but all of them are invalid. It came from a fuzzer doing random mutations and copies. The breakdown: @000 6 bytes magic "GIF89a" @006 7 bytes Logical Screen Descriptor: 0x20 0x00 ... 0x00 - width = 32 - height = 0 - flags = 0x00 - background color index, pixel aspect ratio bytes ignored @00D 10 bytes Image Descriptor header: 0x2C 0xFF ... 0x40 - origin_x = 255 - origin_y = 116 - width = 6 - height = 0 - flags = 0x40, interlaced @017 2 bytes Image Descriptor body (pixel data): 0x01 0x00 - lit_width = 1, INVALID, OUTSIDE THE RANGE [2, 8] - 0x00 byte means "end of data" for this frame @019 8 bytes Graphic Control Extension: 0x21 0xF9 ... 0x00 - valid, but irrelevant here. @021 10 bytes Image Descriptor header: 0x2C 0xFF ... 0x06 - origin_x = 255 - origin_y = 0 - width = 255 - height = 116 - flags = 0x06, INVALID, 0x80 BIT ZERO IMPLIES 0x07 BITS SHOULD BE ZERO @02B 14 bytes Image Descriptor body (pixel data): 0x06 0x06 ... 0x00 - lit_width = 6 - 0x06 precedes a 6 byte block of data - 0x04 precedes a 4 byte block of data - 0x00 byte means "end of data" for this frame @039 10 bytes Image Descriptor header: 0x2C 0xFF ... 0x06 - origin_x = 255 - origin_y = 0 - width = 52479 - height = 13851 - flags = 0x52, INVALID, 0x80 BIT ZERO IMPLIES 0x07 BITS SHOULD BE ZERO @043 5 bytes Image Descriptor body (pixel data): 0x66 0xDE ... unexpected-EOF - lit_width = 102, INVALID, OUTSIDE THE RANGE [2, 8] - 0xDE precedes a 222 byte block of data, INVALIDLY TRUNCATED On Image Descriptor flags INVALIDITY, https://www.w3.org/Graphics/GIF/spec-gif89a.txt section 20.c says that "Size of Local Color Table [the low 3 bits]... should be 0 if there is no Local Color Table specified [the high bit]." On LZW literal width (also known as Minimum Code Size) INVALIDITY outside of the range [2, 8], https://www.w3.org/Graphics/GIF/spec-gif89a.txt Appendix F says that "Normally this will be the same as the number of [palette index] bits. Because of some algorithmic constraints however, black & white images which have one color bit must be indicated as having a code size of 2." In practice, some GIF decoders, including the old third_party/gif code, don't enforce this. It says: "currentFrame->setDataSize(this->getOneByte())" with the only further check being against an upper bound of SK_MAX_DICTIONARY_ENTRY_BITS (the constant 12). */ DEF_TEST(Codec_InvalidAnimated, r) { // ASAN will complain if there is an issue. auto path = "invalid_images/skbug6046.gif"; auto stream = GetResourceAsStream(path); if (!stream) { return; } std::unique_ptr codec(SkCodec::MakeFromStream(std::move(stream))); REPORTER_ASSERT(r, codec); if (!codec) { return; } const auto info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); auto frameInfos = codec->getFrameInfo(); SkCodec::Options opts; for (int i = 0; static_cast(i) < frameInfos.size(); i++) { opts.fFrameIndex = i; const auto reqFrame = frameInfos[i].fRequiredFrame; opts.fPriorFrame = reqFrame == i - 1 ? reqFrame : SkCodec::kNoFrame; auto result = codec->startIncrementalDecode(info, bm.getPixels(), bm.rowBytes(), &opts); #ifdef SK_HAS_WUFFS_LIBRARY // We are transitioning from an old GIF implementation to a new (Wuffs) // GIF implementation. // // This test (without SK_HAS_WUFFS_LIBRARY) is overly specific to the // old implementation. As a fuzzer-discovered test, it's likely that // what's fundamentally being tested isn't that decoding an invalid GIF // leads to kSuccess, but that decoding an invalid GIF doesn't lead to // an ASAN violation. // // Each of the 3 frames of the source GIF image is fundamentally // invalid, as per the "breakdown" comment above. The old // implementation is happy to call startIncrementalDecode 3 times. The // new implementation is happy for the first two times, but on the 3rd, // SkCodec::startIncrementalDecode calls SkCodec::handleFrameIndex // which calls SkCodec::getPixels on the requiredFrame (the 0'th // frame), and the new implementation subsequently hits the // invalid-ness and returns kErrorInInput instead of kSuccess. // // Once the transition is complete, we can remove the #ifdef and delete // the rest of the test function. if (i == 2) { if (result != SkCodec::kErrorInInput) { ERRORF(r, "Unexpected result for decoding frame %i (out of %i) with error %i\n", i, frameInfos.size(), result); } return; } #endif if (result != SkCodec::kSuccess) { ERRORF(r, "Failed to start decoding frame %i (out of %i) with error %i\n", i, frameInfos.size(), result); continue; } codec->incrementalDecode(); } } static void encode_format(SkDynamicMemoryWStream* stream, const SkPixmap& pixmap, SkEncodedImageFormat format) { switch (format) { case SkEncodedImageFormat::kPNG: SkPngEncoder::Encode(stream, pixmap, SkPngEncoder::Options()); break; case SkEncodedImageFormat::kJPEG: SkJpegEncoder::Encode(stream, pixmap, SkJpegEncoder::Options()); break; case SkEncodedImageFormat::kWEBP: SkWebpEncoder::Encode(stream, pixmap, SkWebpEncoder::Options()); break; default: SkASSERT(false); break; } } static void test_encode_icc(skiatest::Reporter* r, SkEncodedImageFormat format) { // Test with sRGB color space. SkBitmap srgbBitmap; SkImageInfo srgbInfo = SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType); srgbBitmap.allocPixels(srgbInfo); *srgbBitmap.getAddr32(0, 0) = 0; SkPixmap pixmap; srgbBitmap.peekPixels(&pixmap); SkDynamicMemoryWStream srgbBuf; encode_format(&srgbBuf, pixmap, format); sk_sp srgbData = srgbBuf.detachAsData(); std::unique_ptr srgbCodec(SkCodec::MakeFromData(srgbData)); REPORTER_ASSERT(r, srgbCodec->getInfo().colorSpace() == sk_srgb_singleton()); // Test with P3 color space. SkDynamicMemoryWStream p3Buf; sk_sp p3 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDCIP3); pixmap.setColorSpace(p3); encode_format(&p3Buf, pixmap, format); sk_sp p3Data = p3Buf.detachAsData(); std::unique_ptr p3Codec(SkCodec::MakeFromData(p3Data)); REPORTER_ASSERT(r, p3Codec->getInfo().colorSpace()->gammaCloseToSRGB()); skcms_Matrix3x3 mat0, mat1; bool success = p3->toXYZD50(&mat0); REPORTER_ASSERT(r, success); success = p3Codec->getInfo().colorSpace()->toXYZD50(&mat1); REPORTER_ASSERT(r, success); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { REPORTER_ASSERT(r, color_space_almost_equal(mat0.vals[i][j], mat1.vals[i][j])); } } } DEF_TEST(Codec_EncodeICC, r) { test_encode_icc(r, SkEncodedImageFormat::kPNG); test_encode_icc(r, SkEncodedImageFormat::kJPEG); test_encode_icc(r, SkEncodedImageFormat::kWEBP); } DEF_TEST(Codec_webp_rowsDecoded, r) { const char* path = "images/baby_tux.webp"; sk_sp data(GetResourceAsData(path)); if (!data) { return; } // Truncate this file so that the header is available but no rows can be // decoded. This should create a codec but fail to decode. size_t truncatedSize = 5000; sk_sp subset = SkData::MakeSubset(data.get(), 0, truncatedSize); std::unique_ptr codec = SkCodec::MakeFromData(std::move(subset)); if (!codec) { ERRORF(r, "Failed to create a codec for %s truncated to only %lu bytes", path, truncatedSize); return; } test_info(r, codec.get(), codec->getInfo(), SkCodec::kInvalidInput, nullptr); } /* For the Codec_ossfuzz6274 test, immediately below, resources/invalid_images/ossfuzz6274.gif is: 00000000: 4749 4638 3961 2000 2000 f120 2020 2020 GIF89a . .. 00000010: 2020 2020 2020 2020 2021 f903 ff20 2020 !... 00000020: 002c 0000 0000 2000 2000 2000 00 .,.... . . .. @000 6 bytes magic "GIF89a" @006 7 bytes Logical Screen Descriptor: 0x20 0x00 ... 0x00 - width = 32 - height = 32 - flags = 0xF1, global color table, 4 RGB entries - background color index, pixel aspect ratio bytes ignored @00D 12 bytes Color Table: 0x20 0x20 ... 0x20 @019 20 bytes Graphic Control Extension: 0x21 0xF9 ... unexpected-EOF - 0x03 precedes a 3 byte block of data, INVALID, MUST BE 4 - 0x20 precedes a 32 byte block of data, INVALIDly truncated https://www.w3.org/Graphics/GIF/spec-gif89a.txt section 23.c says that the block size (for an 0x21 0xF9 Graphic Control Extension) must be "the fixed value 4". */ DEF_TEST(Codec_ossfuzz6274, r) { if (GetResourcePath().isEmpty()) { return; } const char* file = "invalid_images/ossfuzz6274.gif"; auto image = GetResourceAsImage(file); #ifdef SK_HAS_WUFFS_LIBRARY // We are transitioning from an old GIF implementation to a new (Wuffs) GIF // implementation. // // This test (without SK_HAS_WUFFS_LIBRARY) is overly specific to the old // implementation. In the new implementation, the MakeFromStream factory // method returns a nullptr SkImage*, instead of returning a non-null but // otherwise all-transparent SkImage*. // // Either way, the end-to-end result is the same - the source input is // rejected as an invalid GIF image - but the two implementations differ in // how that's represented. // // Once the transition is complete, we can remove the #ifdef and delete the // rest of the test function. // // See Codec_GifTruncated3 for the equivalent of the rest of the test // function, on different (but still truncated) source data. if (image) { ERRORF(r, "Invalid data gave non-nullptr image"); } return; #endif if (!image) { ERRORF(r, "Missing %s", file); return; } REPORTER_ASSERT(r, image->width() == 32); REPORTER_ASSERT(r, image->height() == 32); SkBitmap bm; if (!bm.tryAllocPixels(SkImageInfo::MakeN32Premul(32, 32))) { ERRORF(r, "Failed to allocate pixels"); return; } bm.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(bm); canvas.drawImage(image, 0, 0, nullptr); for (int i = 0; i < image->width(); ++i) for (int j = 0; j < image->height(); ++j) { SkColor actual = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(i, j)); if (actual != SK_ColorTRANSPARENT) { ERRORF(r, "did not initialize pixels! %i, %i is %x", i, j, actual); } } } DEF_TEST(Codec_78329453, r) { if (GetResourcePath().isEmpty()) { return; } const char* file = "images/b78329453.jpeg"; auto data = GetResourceAsData(file); if (!data) { ERRORF(r, "Missing %s", file); return; } auto codec = SkAndroidCodec::MakeFromCodec(SkCodec::MakeFromData(data)); if (!codec) { ERRORF(r, "failed to create codec from %s", file); return; } // A bug in jpeg_skip_scanlines resulted in an infinite loop for this specific // sample size on this image. Other sample sizes could have had the same result, // but the ones tested by DM happen to not. constexpr int kSampleSize = 19; const auto size = codec->getSampledDimensions(kSampleSize); auto info = codec->getInfo().makeWH(size.width(), size.height()); SkBitmap bm; bm.allocPixels(info); bm.eraseColor(SK_ColorTRANSPARENT); SkAndroidCodec::AndroidOptions options; options.fSampleSize = kSampleSize; auto result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes(), &options); if (result != SkCodec::kSuccess) { ERRORF(r, "failed to decode with error %s", SkCodec::ResultToString(result)); } } DEF_TEST(Codec_A8, r) { if (GetResourcePath().isEmpty()) { return; } const char* file = "images/mandrill_cmyk.jpg"; auto data = GetResourceAsData(file); if (!data) { ERRORF(r, "missing %s", file); return; } auto codec = SkCodec::MakeFromData(std::move(data)); auto info = codec->getInfo().makeColorType(kAlpha_8_SkColorType); SkBitmap bm; bm.allocPixels(info); REPORTER_ASSERT(r, codec->getPixels(bm.pixmap()) == SkCodec::kInvalidConversion); } DEF_TEST(Codec_crbug807324, r) { if (GetResourcePath().isEmpty()) { return; } const char* file = "images/crbug807324.png"; auto image = GetResourceAsImage(file); if (!image) { ERRORF(r, "Missing %s", file); return; } const int kWidth = image->width(); const int kHeight = image->height(); SkBitmap bm; if (!bm.tryAllocPixels(SkImageInfo::MakeN32Premul(kWidth, kHeight))) { ERRORF(r, "Could not allocate pixels (%i x %i)", kWidth, kHeight); return; } bm.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(bm); canvas.drawImage(image, 0, 0, nullptr); for (int i = 0; i < kWidth; ++i) for (int j = 0; j < kHeight; ++j) { if (*bm.getAddr32(i, j) == SK_ColorTRANSPARENT) { ERRORF(r, "image should not be transparent! %i, %i is 0", i, j); return; } } }