/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRRect_DEFINED #define SkRRect_DEFINED #include "SkRect.h" #include "SkPoint.h" class SkPath; class SkMatrix; // Path forward: // core work // add contains(SkRect&) - for clip stack // add contains(SkRRect&) - for clip stack // add heart rect computation (max rect inside RR) // add 9patch rect computation // add growToInclude(SkPath&) // analysis // use growToInclude to fit skp round rects & generate stats (RRs vs. real paths) // check on # of rectorus's the RRs could handle // rendering work // update SkPath.addRRect() to only use quads // add GM and bench // further out // detect and triangulate RRectorii rather than falling back to SW in Ganesh // /** \class SkRRect The SkRRect class represents a rounded rect with a potentially different radii for each corner. It does not have a constructor so must be initialized with one of the initialization functions (e.g., setEmpty, setRectRadii, etc.) This class is intended to roughly match CSS' border-*-*-radius capabilities. This means: If either of a corner's radii are 0 the corner will be square. Negative radii are not allowed (they are clamped to zero). If the corner curves overlap they will be proportionally reduced to fit. */ class SK_API SkRRect { public: SkRRect() { this->setEmpty(); } SkRRect(const SkRRect&) = default; SkRRect& operator=(const SkRRect&) = default; /** * Enum to capture the various possible subtypes of RR. Accessed * by type(). The subtypes become progressively less restrictive. */ enum Type { // !< The RR is empty kEmpty_Type, //!< The RR is actually a (non-empty) rect (i.e., at least one radius //!< at each corner is zero) kRect_Type, //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal //!< and >= width/2 and all the y radii are equal and >= height/2 kOval_Type, //!< The RR is non-empty and all the x radii are equal & all y radii //!< are equal but it is not an oval (i.e., there are lines between //!< the curves) nor a rect (i.e., both radii are non-zero) kSimple_Type, //!< The RR is non-empty and the two left x radii are equal, the two top //!< y radii are equal, and the same for the right and bottom but it is //!< neither an rect, oval, nor a simple RR. It is called "nine patch" //!< because the centers of the corner ellipses form an axis aligned //!< rect with edges that divide the RR into an 9 rectangular patches: //!< an interior patch, four edge patches, and four corner patches. kNinePatch_Type, //!< A fully general (non-empty) RR. Some of the x and/or y radii are //!< different from the others and there must be one corner where //!< both radii are non-zero. kComplex_Type, kLastType = kComplex_Type, }; /** * Returns the RR's sub type. */ Type getType() const { SkASSERT(this->isValid()); return static_cast(fType); } Type type() const { return this->getType(); } inline bool isEmpty() const { return kEmpty_Type == this->getType(); } inline bool isRect() const { return kRect_Type == this->getType(); } inline bool isOval() const { return kOval_Type == this->getType(); } inline bool isSimple() const { return kSimple_Type == this->getType(); } // TODO: should isSimpleCircular & isCircle take a tolerance? This could help // instances where the mapping to device space is noisy. inline bool isSimpleCircular() const { return this->isSimple() && SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY); } inline bool isCircle() const { return this->isOval() && SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY); } inline bool isNinePatch() const { return kNinePatch_Type == this->getType(); } inline bool isComplex() const { return kComplex_Type == this->getType(); } bool allCornersCircular(SkScalar tolerance = SK_ScalarNearlyZero) const; SkScalar width() const { return fRect.width(); } SkScalar height() const { return fRect.height(); } /** * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii. */ void setEmpty() { fRect.setEmpty(); memset(fRadii, 0, sizeof(fRadii)); fType = kEmpty_Type; SkASSERT(this->isValid()); } /** * Set this RR to match the supplied rect. All radii will be 0. */ void setRect(const SkRect& rect) { fRect = rect; fRect.sort(); if (fRect.isEmpty() || !fRect.isFinite()) { this->setEmpty(); return; } memset(fRadii, 0, sizeof(fRadii)); fType = kRect_Type; SkASSERT(this->isValid()); } static SkRRect MakeEmpty() { SkRRect rr; rr.setEmpty(); return rr; } static SkRRect MakeRect(const SkRect& r) { SkRRect rr; rr.setRect(r); return rr; } static SkRRect MakeOval(const SkRect& oval) { SkRRect rr; rr.setOval(oval); return rr; } static SkRRect MakeRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { SkRRect rr; rr.setRectXY(rect, xRad, yRad); return rr; } /** * Set this RR to match the supplied oval. All x radii will equal half the * width and all y radii will equal half the height. */ void setOval(const SkRect& oval) { fRect = oval; fRect.sort(); if (fRect.isEmpty() || !fRect.isFinite()) { this->setEmpty(); return; } SkScalar xRad = SkScalarHalf(fRect.width()); SkScalar yRad = SkScalarHalf(fRect.height()); for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kOval_Type; SkASSERT(this->isValid()); } /** * Initialize the RR with the same radii for all four corners. */ void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad); /** * Initialize the rr with one radius per-side. */ void setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, SkScalar rightRad, SkScalar bottomRad); /** * Initialize the RR with potentially different radii for all four corners. */ void setRectRadii(const SkRect& rect, const SkVector radii[4]); // The radii are stored in UL, UR, LR, LL order. enum Corner { kUpperLeft_Corner, kUpperRight_Corner, kLowerRight_Corner, kLowerLeft_Corner }; const SkRect& rect() const { return fRect; } const SkVector& radii(Corner corner) const { return fRadii[corner]; } const SkRect& getBounds() const { return fRect; } /** * When a rrect is simple, all of its radii are equal. This returns one * of those radii. This call requires the rrect to be non-complex. */ const SkVector& getSimpleRadii() const { SkASSERT(!this->isComplex()); return fRadii[0]; } friend bool operator==(const SkRRect& a, const SkRRect& b) { return a.fRect == b.fRect && SkScalarsEqual(a.fRadii[0].asScalars(), b.fRadii[0].asScalars(), 8); } friend bool operator!=(const SkRRect& a, const SkRRect& b) { return a.fRect != b.fRect || !SkScalarsEqual(a.fRadii[0].asScalars(), b.fRadii[0].asScalars(), 8); } /** * Call inset on the bounds, and adjust the radii to reflect what happens * in stroking: If the corner is sharp (no curvature), leave it alone, * otherwise we grow/shrink the radii by the amount of the inset. If a * given radius becomes negative, it is pinned to 0. * * It is valid for dst == this. */ void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const; void inset(SkScalar dx, SkScalar dy) { this->inset(dx, dy, this); } /** * Call outset on the bounds, and adjust the radii to reflect what happens * in stroking: If the corner is sharp (no curvature), leave it alone, * otherwise we grow/shrink the radii by the amount of the inset. If a * given radius becomes negative, it is pinned to 0. * * It is valid for dst == this. */ void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const { this->inset(-dx, -dy, dst); } void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy, this); } /** * Translate the rrect by (dx, dy). */ void offset(SkScalar dx, SkScalar dy) { fRect.offset(dx, dy); } SkRRect SK_WARN_UNUSED_RESULT makeOffset(SkScalar dx, SkScalar dy) const { return SkRRect(fRect.makeOffset(dx, dy), fRadii, fType); } /** * Returns true if 'rect' is wholy inside the RR, and both * are not empty. */ bool contains(const SkRect& rect) const; bool isValid() const; static bool AreRectAndRadiiValid(const SkRect&, const SkVector[4]); enum { kSizeInMemory = 12 * sizeof(SkScalar) }; /** * Write the rrect into the specified buffer. This is guaranteed to always * write kSizeInMemory bytes, and that value is guaranteed to always be * a multiple of 4. Return kSizeInMemory. */ size_t writeToMemory(void* buffer) const; /** * Reads the rrect from the specified buffer * * If the specified buffer is large enough, this will read kSizeInMemory bytes, * and that value is guaranteed to always be a multiple of 4. * * @param buffer Memory to read from * @param length Amount of memory available in the buffer * @return number of bytes read (must be a multiple of 4) or * 0 if there was not enough memory available */ size_t readFromMemory(const void* buffer, size_t length); /** * Transform by the specified matrix, and put the result in dst. * * @param matrix SkMatrix specifying the transform. Must only contain * scale and/or translate, or this call will fail. * @param dst SkRRect to store the result. It is an error to use this, * which would make this function no longer const. * @return true on success, false on failure. If false, dst is unmodified. */ bool transform(const SkMatrix& matrix, SkRRect* dst) const; void dump(bool asHex) const; void dump() const { this->dump(false); } void dumpHex() const { this->dump(true); } private: SkRRect(const SkRect& rect, const SkVector radii[4], int32_t type) : fRect(rect) , fRadii{radii[0], radii[1], radii[2], radii[3]} , fType(type) {} SkRect fRect; // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[] SkVector fRadii[4]; // use an explicitly sized type so we're sure the class is dense (no uninitialized bytes) int32_t fType; // TODO: add padding so we can use memcpy for flattening and not copy // uninitialized data void computeType(); bool checkCornerContainment(SkScalar x, SkScalar y) const; void scaleRadii(); // to access fRadii directly friend class SkPath; }; #endif