/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "IntersectionUtilities.h" /* Given a cubic c, t1, and t2, find a small cubic segment. The new cubic is defined as points A, B, C, and D, where s1 = 1 - t1 s2 = 1 - t2 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 We don't have B or C. So We define two equations to isolate them. First, compute two reference T values 1/3 and 2/3 from t1 to t2: c(at (2*t1 + t2)/3) == E c(at (t1 + 2*t2)/3) == F Next, compute where those values must be if we know the values of B and C: _12 = A*2/3 + B*1/3 12_ = A*1/3 + B*2/3 _23 = B*2/3 + C*1/3 23_ = B*1/3 + C*2/3 _34 = C*2/3 + D*1/3 34_ = C*1/3 + D*2/3 _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 = A*8/27 + B*12/27 + C*6/27 + D*1/27 = E 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 = A*1/27 + B*6/27 + C*12/27 + D*8/27 = F E*27 = A*8 + B*12 + C*6 + D F*27 = A + B*6 + C*12 + D*8 Group the known values on one side: M = E*27 - A*8 - D = B*12 + C* 6 N = F*27 - A - D*8 = B* 6 + C*12 M*2 - N = B*18 N*2 - M = C*18 B = (M*2 - N)/18 C = (N*2 - M)/18 */ static double interp_cubic_coords(const double* src, double t) { double ab = interp(src[0], src[2], t); double bc = interp(src[2], src[4], t); double cd = interp(src[4], src[6], t); double abc = interp(ab, bc, t); double bcd = interp(bc, cd, t); double abcd = interp(abc, bcd, t); return abcd; } void sub_divide(const Cubic& src, double t1, double t2, Cubic& dst) { double ax = dst[0].x = interp_cubic_coords(&src[0].x, t1); double ay = dst[0].y = interp_cubic_coords(&src[0].y, t1); double ex = interp_cubic_coords(&src[0].x, (t1*2+t2)/3); double ey = interp_cubic_coords(&src[0].y, (t1*2+t2)/3); double fx = interp_cubic_coords(&src[0].x, (t1+t2*2)/3); double fy = interp_cubic_coords(&src[0].y, (t1+t2*2)/3); double dx = dst[3].x = interp_cubic_coords(&src[0].x, t2); double dy = dst[3].y = interp_cubic_coords(&src[0].y, t2); double mx = ex * 27 - ax * 8 - dx; double my = ey * 27 - ay * 8 - dy; double nx = fx * 27 - ax - dx * 8; double ny = fy * 27 - ay - dy * 8; /* bx = */ dst[1].x = (mx * 2 - nx) / 18; /* by = */ dst[1].y = (my * 2 - ny) / 18; /* cx = */ dst[2].x = (nx * 2 - mx) / 18; /* cy = */ dst[2].y = (ny * 2 - my) / 18; } /* classic one t subdivision */ static void interp_cubic_coords(const double* src, double* dst, double t) { double ab = interp(src[0], src[2], t); double bc = interp(src[2], src[4], t); double cd = interp(src[4], src[6], t); double abc = interp(ab, bc, t); double bcd = interp(bc, cd, t); double abcd = interp(abc, bcd, t); dst[0] = src[0]; dst[2] = ab; dst[4] = abc; dst[6] = abcd; dst[8] = bcd; dst[10] = cd; dst[12] = src[6]; } void chop_at(const Cubic& src, CubicPair& dst, double t) { if (t == 0.5) { dst.pts[0] = src[0]; dst.pts[1].x = (src[0].x + src[1].x) / 2; dst.pts[1].y = (src[0].y + src[1].y) / 2; dst.pts[2].x = (src[0].x + 2 * src[1].x + src[2].x) / 4; dst.pts[2].y = (src[0].y + 2 * src[1].y + src[2].y) / 4; dst.pts[3].x = (src[0].x + 3 * (src[1].x + src[2].x) + src[3].x) / 8; dst.pts[3].y = (src[0].y + 3 * (src[1].y + src[2].y) + src[3].y) / 8; dst.pts[4].x = (src[1].x + 2 * src[2].x + src[3].x) / 4; dst.pts[4].y = (src[1].y + 2 * src[2].y + src[3].y) / 4; dst.pts[5].x = (src[2].x + src[3].x) / 2; dst.pts[5].y = (src[2].y + src[3].y) / 2; dst.pts[6] = src[3]; return; } interp_cubic_coords(&src[0].x, &dst.pts[0].x, t); interp_cubic_coords(&src[0].y, &dst.pts[0].y, t); }