/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CurveUtilities.h" #include "EdgeWalker_Test.h" #include "Intersection_Tests.h" #include "Intersections.h" #include "TestUtilities.h" struct lineQuad { Quadratic quad; _Line line; int result; _Point expected[2]; } lineQuadTests[] = { // quad line results {{{1, 1}, {2, 1}, {0, 2}}, {{0, 0}, {1, 1}}, 1, {{1, 1} }}, {{{0, 0}, {1, 1}, {3, 1}}, {{0, 0}, {3, 1}}, 2, {{0, 0}, {3, 1}}}, {{{2, 0}, {1, 1}, {2, 2}}, {{0, 0}, {0, 2}}, 0 }, {{{4, 0}, {0, 1}, {4, 2}}, {{3, 1}, {4, 1}}, 0, }, {{{0, 0}, {0, 1}, {1, 1}}, {{0, 1}, {1, 0}}, 1, {{.25, .75} }}, }; size_t lineQuadTests_count = sizeof(lineQuadTests) / sizeof(lineQuadTests[0]); const int firstLineQuadIntersectionTest = 0; static int doIntersect(Intersections& intersections, const Quadratic& quad, const _Line& line, bool& flipped) { int result; flipped = false; if (line[0].x == line[1].x) { double top = line[0].y; double bottom = line[1].y; flipped = top > bottom; if (flipped) { SkTSwap(top, bottom); } result = verticalIntersect(quad, top, bottom, line[0].x, flipped, intersections); } else if (line[0].y == line[1].y) { double left = line[0].x; double right = line[1].x; flipped = left > right; if (flipped) { SkTSwap(left, right); } result = horizontalIntersect(quad, left, right, line[0].y, flipped, intersections); } else { intersect(quad, line, intersections); result = intersections.fUsed; } return result; } static struct oneLineQuad { Quadratic quad; _Line line; } oneOffs[] = { {{{369.848602,145.680267}, {382.360413,121.298294}, {406.207703,121.298294}}, {{406.207703,121.298294}, {348.781738,123.864815}}} }; static size_t oneOffs_count = sizeof(oneOffs) / sizeof(oneOffs[0]); static void testOneOffs() { Intersections intersections; bool flipped = false; for (size_t index = 0; index < oneOffs_count; ++index) { const Quadratic& quad = oneOffs[index].quad; const _Line& line = oneOffs[index].line; int result = doIntersect(intersections, quad, line, flipped); for (int inner = 0; inner < result; ++inner) { double quadT = intersections.fT[0][inner]; double quadX, quadY; xy_at_t(quad, quadT, quadX, quadY); double lineT = intersections.fT[1][inner]; double lineX, lineY; xy_at_t(line, lineT, lineX, lineY); assert(approximately_equal(quadX, lineX) && approximately_equal(quadY, lineY)); } } } void LineQuadraticIntersection_Test() { if (1) { testOneOffs(); } for (size_t index = firstLineQuadIntersectionTest; index < lineQuadTests_count; ++index) { const Quadratic& quad = lineQuadTests[index].quad; const _Line& line = lineQuadTests[index].line; Quadratic reduce1; _Line reduce2; int order1 = reduceOrder(quad, reduce1); int order2 = reduceOrder(line, reduce2); if (order1 < 3) { SkDebugf("%s [%d] quad order=%d\n", __FUNCTION__, (int) index, order1); SkASSERT(0); } if (order2 < 2) { SkDebugf("%s [%d] line order=%d\n", __FUNCTION__, (int) index, order2); SkASSERT(0); } Intersections intersections; bool flipped = false; int result = doIntersect(intersections, quad, line, flipped); SkASSERT(result == lineQuadTests[index].result); if (!intersections.intersected()) { continue; } for (int pt = 0; pt < result; ++pt) { double tt1 = intersections.fT[0][pt]; SkASSERT(tt1 >= 0 && tt1 <= 1); _Point t1, t2; xy_at_t(quad, tt1, t1.x, t1.y); double tt2 = intersections.fT[1][pt]; SkASSERT(tt2 >= 0 && tt2 <= 1); xy_at_t(line, tt2, t2.x, t2.y); if (!approximately_equal(t1.x, t2.x)) { SkDebugf("%s [%d,%d] x!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, (int)index, pt, tt1, t1.x, t1.y, tt2, t2.x, t2.y); SkASSERT(0); } if (!approximately_equal(t1.y, t2.y)) { SkDebugf("%s [%d,%d] y!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, (int)index, pt, tt1, t1.x, t1.y, tt2, t2.x, t2.y); SkASSERT(0); } if (!t1.approximatelyEqual(lineQuadTests[index].expected[0]) && (lineQuadTests[index].result == 1 || !t1.approximatelyEqual(lineQuadTests[index].expected[1]))) { SkDebugf("%s t1=(%1.9g,%1.9g)\n", __FUNCTION__, t1.x, t1.y); SkASSERT(0); } } } } static void testLineIntersect(State4& state, const Quadratic& quad, const _Line& line, const double x, const double y) { char pathStr[1024]; bzero(pathStr, sizeof(pathStr)); char* str = pathStr; str += sprintf(str, " path.moveTo(%1.9g, %1.9g);\n", quad[0].x, quad[0].y); str += sprintf(str, " path.quadTo(%1.9g, %1.9g, %1.9g, %1.9g);\n", quad[1].x, quad[1].y, quad[2].x, quad[2].y); str += sprintf(str, " path.moveTo(%1.9g, %1.9g);\n", line[0].x, line[0].y); str += sprintf(str, " path.lineTo(%1.9g, %1.9g);\n", line[1].x, line[1].y); Intersections intersections; bool flipped = false; int result = doIntersect(intersections, quad, line, flipped); bool found = false; for (int index = 0; index < result; ++index) { double quadT = intersections.fT[0][index]; double quadX, quadY; xy_at_t(quad, quadT, quadX, quadY); double lineT = intersections.fT[1][index]; double lineX, lineY; xy_at_t(line, lineT, lineX, lineY); if (fabs(quadX - lineX) < FLT_EPSILON && fabs(quadY - lineY) < FLT_EPSILON && fabs(x - lineX) < FLT_EPSILON && fabs(y - lineY) < FLT_EPSILON) { found = true; } } SkASSERT(found); state.testsRun++; } // find a point on a quad by choosing a t from 0 to 1 // create a vertical span above and below the point // verify that intersecting the vertical span and the quad returns t // verify that a vertical span starting at quad[0] intersects at t=0 // verify that a vertical span starting at quad[2] intersects at t=1 static void* testQuadLineIntersectMain(void* data) { SkASSERT(data); State4& state = *(State4*) data; do { int ax = state.a & 0x03; int ay = state.a >> 2; int bx = state.b & 0x03; int by = state.b >> 2; int cx = state.c & 0x03; int cy = state.c >> 2; Quadratic quad = {{ax, ay}, {bx, by}, {cx, cy}}; Quadratic reduced; int order = reduceOrder(quad, reduced); if (order < 3) { continue; // skip degenerates } for (int tIndex = 0; tIndex <= 4; ++tIndex) { double x, y; xy_at_t(quad, tIndex / 4.0, x, y); for (int h = -2; h <= 2; ++h) { for (int v = -2; v <= 2; ++v) { if (h == v && abs(h) != 1) { continue; } _Line line = {{x - h, y - v}, {x, y}}; testLineIntersect(state, quad, line, x, y); _Line line2 = {{x, y}, {x + h, y + v}}; testLineIntersect(state, quad, line2, x, y); _Line line3 = {{x - h, y - v}, {x + h, y + v}}; testLineIntersect(state, quad, line3, x, y); } } } } while (runNextTestSet(state)); return NULL; } void QuadLineIntersectThreaded_Test(int& testsRun) { SkDebugf("%s\n", __FUNCTION__); const char testStr[] = "testQuadLineIntersect"; initializeTests(testStr, sizeof(testStr)); int testsStart = testsRun; for (int a = 0; a < 16; ++a) { for (int b = 0 ; b < 16; ++b) { for (int c = 0 ; c < 16; ++c) { testsRun += dispatchTest4(testQuadLineIntersectMain, a, b, c, 0); } if (!gRunTestsInOneThread) SkDebugf("."); } if (!gRunTestsInOneThread) SkDebugf("%d", a); } testsRun += waitForCompletion(); SkDebugf("\n%s tests=%d total=%d\n", __FUNCTION__, testsRun - testsStart, testsRun); }