/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SkMath_DEFINED #define SkMath_DEFINED #include "SkTypes.h" //! Returns the number of leading zero bits (0...32) int SkCLZ_portable(uint32_t); /** Computes the 64bit product of a * b, and then shifts the answer down by shift bits, returning the low 32bits. shift must be [0..63] e.g. to perform a fixedmul, call SkMulShift(a, b, 16) */ int32_t SkMulShift(int32_t a, int32_t b, unsigned shift); /** Computes numer1 * numer2 / denom in full 64 intermediate precision. It is an error for denom to be 0. There is no special handling if the result overflows 32bits. */ int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom); /** Computes (numer1 << shift) / denom in full 64 intermediate precision. It is an error for denom to be 0. There is no special handling if the result overflows 32bits. */ int32_t SkDivBits(int32_t numer, int32_t denom, int shift); /** Return the integer square root of value, with a bias of bitBias */ int32_t SkSqrtBits(int32_t value, int bitBias); /** Return the integer square root of n, treated as a SkFixed (16.16) */ #define SkSqrt32(n) SkSqrtBits(n, 15) /** Return the integer cube root of value, with a bias of bitBias */ int32_t SkCubeRootBits(int32_t value, int bitBias); /** Returns -1 if n < 0, else returns 0 */ #define SkExtractSign(n) ((int32_t)(n) >> 31) /** If sign == -1, returns -n, else sign must be 0, and returns n. Typically used in conjunction with SkExtractSign(). */ static inline int32_t SkApplySign(int32_t n, int32_t sign) { SkASSERT(sign == 0 || sign == -1); return (n ^ sign) - sign; } /** Return x with the sign of y */ static inline int32_t SkCopySign32(int32_t x, int32_t y) { return SkApplySign(x, SkExtractSign(x ^ y)); } /** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) */ static inline int SkClampPos(int value) { return value & ~(value >> 31); } /** Given an integer and a positive (max) integer, return the value pinned against 0 and max, inclusive. @param value The value we want returned pinned between [0...max] @param max The positive max value @return 0 if value < 0, max if value > max, else value */ static inline int SkClampMax(int value, int max) { // ensure that max is positive SkASSERT(max >= 0); if (value < 0) { value = 0; } if (value > max) { value = max; } return value; } /** Given a positive value and a positive max, return the value pinned against max. Note: only works as long as max - value doesn't wrap around @return max if value >= max, else value */ static inline unsigned SkClampUMax(unsigned value, unsigned max) { #ifdef SK_CPU_HAS_CONDITIONAL_INSTR if (value > max) { value = max; } return value; #else int diff = max - value; // clear diff if diff is positive diff &= diff >> 31; return value + diff; #endif } /////////////////////////////////////////////////////////////////////////////// #if defined(__arm__) && !defined(__thumb__) #define SkCLZ(x) __builtin_clz(x) #endif #ifndef SkCLZ #define SkCLZ(x) SkCLZ_portable(x) #endif /////////////////////////////////////////////////////////////////////////////// /** Returns the smallest power-of-2 that is >= the specified value. If value is already a power of 2, then it is returned unchanged. It is undefined if value is <= 0. */ static inline int SkNextPow2(int value) { SkASSERT(value > 0); return 1 << (32 - SkCLZ(value - 1)); } /** Returns the log2 of the specified value, were that value to be rounded up to the next power of 2. It is undefined to pass 0. Examples: SkNextLog2(1) -> 0 SkNextLog2(2) -> 1 SkNextLog2(3) -> 2 SkNextLog2(4) -> 2 SkNextLog2(5) -> 3 */ static inline int SkNextLog2(uint32_t value) { SkASSERT(value != 0); return 32 - SkCLZ(value - 1); } /** Returns true if value is a power of 2. Does not explicitly check for value <= 0. */ static inline bool SkIsPow2(int value) { return (value & (value - 1)) == 0; } /////////////////////////////////////////////////////////////////////////////// /** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t. With this requirement, we can generate faster instructions on some architectures. */ #if defined(__arm__) \ && !defined(__thumb__) \ && !defined(__ARM_ARCH_4T__) \ && !defined(__ARM_ARCH_5T__) static inline int32_t SkMulS16(S16CPU x, S16CPU y) { SkASSERT((int16_t)x == x); SkASSERT((int16_t)y == y); int32_t product; asm("smulbb %0, %1, %2 \n" : "=r"(product) : "r"(x), "r"(y) ); return product; } #else #ifdef SK_DEBUG static inline int32_t SkMulS16(S16CPU x, S16CPU y) { SkASSERT((int16_t)x == x); SkASSERT((int16_t)y == y); return x * y; } #else #define SkMulS16(x, y) ((x) * (y)) #endif #endif /** Return a*b/255, truncating away any fractional bits. Only valid if both a and b are 0..255 */ static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { SkASSERT((uint8_t)a == a); SkASSERT((uint8_t)b == b); unsigned prod = SkMulS16(a, b) + 1; return (prod + (prod >> 8)) >> 8; } /** Return a*b/255, rounding any fractional bits. Only valid if both a and b are 0..255 */ static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) { SkASSERT((uint8_t)a == a); SkASSERT((uint8_t)b == b); unsigned prod = SkMulS16(a, b) + 128; return (prod + (prod >> 8)) >> 8; } /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if both a and b are 0..255. The expected result equals (a * b + 254) / 255. */ static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { SkASSERT((uint8_t)a == a); SkASSERT((uint8_t)b == b); unsigned prod = SkMulS16(a, b) + 255; return (prod + (prod >> 8)) >> 8; } /** Return a*b/((1 << shift) - 1), rounding any fractional bits. Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8 */ static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) { SkASSERT(a <= 32767); SkASSERT(b <= 32767); SkASSERT(shift > 0 && shift <= 8); unsigned prod = SkMulS16(a, b) + (1 << (shift - 1)); return (prod + (prod >> shift)) >> shift; } /** Just the rounding step in SkDiv255Round: round(value / 255) */ static inline unsigned SkDiv255Round(unsigned prod) { prod += 128; return (prod + (prod >> 8)) >> 8; } #endif