/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkString_DEFINED #define SkString_DEFINED #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkTypes.h" #include "include/private/SkMalloc.h" #include "include/private/SkTArray.h" #include "include/private/SkTo.h" #include #include #include #include namespace skstd { class string_view; } /* Some helper functions for C strings */ static inline bool SkStrStartsWith(const char string[], const char prefixStr[]) { SkASSERT(string); SkASSERT(prefixStr); return !strncmp(string, prefixStr, strlen(prefixStr)); } static inline bool SkStrStartsWith(const char string[], const char prefixChar) { SkASSERT(string); return (prefixChar == *string); } bool SkStrEndsWith(const char string[], const char suffixStr[]); bool SkStrEndsWith(const char string[], const char suffixChar); int SkStrStartsWithOneOf(const char string[], const char prefixes[]); static inline int SkStrFind(const char string[], const char substring[]) { const char *first = strstr(string, substring); if (nullptr == first) return -1; return SkToInt(first - &string[0]); } static inline int SkStrFindLastOf(const char string[], const char subchar) { const char* last = strrchr(string, subchar); if (nullptr == last) return -1; return SkToInt(last - &string[0]); } static inline bool SkStrContains(const char string[], const char substring[]) { SkASSERT(string); SkASSERT(substring); return (-1 != SkStrFind(string, substring)); } static inline bool SkStrContains(const char string[], const char subchar) { SkASSERT(string); char tmp[2]; tmp[0] = subchar; tmp[1] = '\0'; return (-1 != SkStrFind(string, tmp)); } /* * The SkStrAppend... methods will write into the provided buffer, assuming it is large enough. * Each method has an associated const (e.g. kSkStrAppendU32_MaxSize) which will be the largest * value needed for that method's buffer. * * char storage[kSkStrAppendU32_MaxSize]; * SkStrAppendU32(storage, value); * * Note : none of the SkStrAppend... methods write a terminating 0 to their buffers. Instead, * the methods return the ptr to the end of the written part of the buffer. This can be used * to compute the length, and/or know where to write a 0 if that is desired. * * char storage[kSkStrAppendU32_MaxSize + 1]; * char* stop = SkStrAppendU32(storage, value); * size_t len = stop - storage; * *stop = 0; // valid, since storage was 1 byte larger than the max. */ static constexpr int kSkStrAppendU32_MaxSize = 10; char* SkStrAppendU32(char buffer[], uint32_t); static constexpr int kSkStrAppendU64_MaxSize = 20; char* SkStrAppendU64(char buffer[], uint64_t, int minDigits); static constexpr int kSkStrAppendS32_MaxSize = kSkStrAppendU32_MaxSize + 1; char* SkStrAppendS32(char buffer[], int32_t); static constexpr int kSkStrAppendS64_MaxSize = kSkStrAppendU64_MaxSize + 1; char* SkStrAppendS64(char buffer[], int64_t, int minDigits); /** * Floats have at most 8 significant digits, so we limit our %g to that. * However, the total string could be 15 characters: -1.2345678e-005 * * In theory we should only expect up to 2 digits for the exponent, but on * some platforms we have seen 3 (as in the example above). */ static constexpr int kSkStrAppendScalar_MaxSize = 15; /** * Write the scalar in decimal format into buffer, and return a pointer to * the next char after the last one written. Note: a terminating 0 is not * written into buffer, which must be at least kSkStrAppendScalar_MaxSize. * Thus if the caller wants to add a 0 at the end, buffer must be at least * kSkStrAppendScalar_MaxSize + 1 bytes large. */ char* SkStrAppendScalar(char buffer[], SkScalar); /** \class SkString Light weight class for managing strings. Uses reference counting to make string assignments and copies very fast with no extra RAM cost. Assumes UTF8 encoding. */ class SK_API SkString { public: SkString(); explicit SkString(size_t len); explicit SkString(const char text[]); SkString(const char text[], size_t len); SkString(const SkString&); SkString(SkString&&); explicit SkString(const std::string&); explicit SkString(skstd::string_view); ~SkString(); bool isEmpty() const { return 0 == fRec->fLength; } size_t size() const { return (size_t) fRec->fLength; } const char* c_str() const { return fRec->data(); } char operator[](size_t n) const { return this->c_str()[n]; } bool equals(const SkString&) const; bool equals(const char text[]) const; bool equals(const char text[], size_t len) const; bool startsWith(const char prefixStr[]) const { return SkStrStartsWith(fRec->data(), prefixStr); } bool startsWith(const char prefixChar) const { return SkStrStartsWith(fRec->data(), prefixChar); } bool endsWith(const char suffixStr[]) const { return SkStrEndsWith(fRec->data(), suffixStr); } bool endsWith(const char suffixChar) const { return SkStrEndsWith(fRec->data(), suffixChar); } bool contains(const char substring[]) const { return SkStrContains(fRec->data(), substring); } bool contains(const char subchar) const { return SkStrContains(fRec->data(), subchar); } int find(const char substring[]) const { return SkStrFind(fRec->data(), substring); } int findLastOf(const char subchar) const { return SkStrFindLastOf(fRec->data(), subchar); } friend bool operator==(const SkString& a, const SkString& b) { return a.equals(b); } friend bool operator!=(const SkString& a, const SkString& b) { return !a.equals(b); } // these methods edit the string SkString& operator=(const SkString&); SkString& operator=(SkString&&); SkString& operator=(const char text[]); char* writable_str(); char& operator[](size_t n) { return this->writable_str()[n]; } void reset(); /** String contents are preserved on resize. (For destructive resize, `set(nullptr, length)`.) * `resize` automatically reserves an extra byte at the end of the buffer for a null terminator. */ void resize(size_t len); void set(const SkString& src) { *this = src; } void set(const char text[]); void set(const char text[], size_t len); void insert(size_t offset, const SkString& src) { this->insert(offset, src.c_str(), src.size()); } void insert(size_t offset, const char text[]); void insert(size_t offset, const char text[], size_t len); void insertUnichar(size_t offset, SkUnichar); void insertS32(size_t offset, int32_t value); void insertS64(size_t offset, int64_t value, int minDigits = 0); void insertU32(size_t offset, uint32_t value); void insertU64(size_t offset, uint64_t value, int minDigits = 0); void insertHex(size_t offset, uint32_t value, int minDigits = 0); void insertScalar(size_t offset, SkScalar); void append(const SkString& str) { this->insert((size_t)-1, str); } void append(const char text[]) { this->insert((size_t)-1, text); } void append(const char text[], size_t len) { this->insert((size_t)-1, text, len); } void appendUnichar(SkUnichar uni) { this->insertUnichar((size_t)-1, uni); } void appendS32(int32_t value) { this->insertS32((size_t)-1, value); } void appendS64(int64_t value, int minDigits = 0) { this->insertS64((size_t)-1, value, minDigits); } void appendU32(uint32_t value) { this->insertU32((size_t)-1, value); } void appendU64(uint64_t value, int minDigits = 0) { this->insertU64((size_t)-1, value, minDigits); } void appendHex(uint32_t value, int minDigits = 0) { this->insertHex((size_t)-1, value, minDigits); } void appendScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } void prepend(const SkString& str) { this->insert(0, str); } void prepend(const char text[]) { this->insert(0, text); } void prepend(const char text[], size_t len) { this->insert(0, text, len); } void prependUnichar(SkUnichar uni) { this->insertUnichar(0, uni); } void prependS32(int32_t value) { this->insertS32(0, value); } void prependS64(int32_t value, int minDigits = 0) { this->insertS64(0, value, minDigits); } void prependHex(uint32_t value, int minDigits = 0) { this->insertHex(0, value, minDigits); } void prependScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } void printf(const char format[], ...) SK_PRINTF_LIKE(2, 3); void printVAList(const char format[], va_list); void appendf(const char format[], ...) SK_PRINTF_LIKE(2, 3); void appendVAList(const char format[], va_list); void prependf(const char format[], ...) SK_PRINTF_LIKE(2, 3); void prependVAList(const char format[], va_list); void remove(size_t offset, size_t length); SkString& operator+=(const SkString& s) { this->append(s); return *this; } SkString& operator+=(const char text[]) { this->append(text); return *this; } SkString& operator+=(const char c) { this->append(&c, 1); return *this; } /** * Swap contents between this and other. This function is guaranteed * to never fail or throw. */ void swap(SkString& other); private: struct Rec { public: constexpr Rec(uint32_t len, int32_t refCnt) : fLength(len), fRefCnt(refCnt) {} static sk_sp Make(const char text[], size_t len); char* data() { return fBeginningOfData; } const char* data() const { return fBeginningOfData; } void ref() const; void unref() const; bool unique() const; #ifdef SK_DEBUG int32_t getRefCnt() const; #endif uint32_t fLength; // logically size_t, but we want it to stay 32 bits private: mutable std::atomic fRefCnt; char fBeginningOfData[1] = {'\0'}; // Ensure the unsized delete is called. void operator delete(void* p) { ::operator delete(p); } }; sk_sp fRec; #ifdef SK_DEBUG const SkString& validate() const; #else const SkString& validate() const { return *this; } #endif static const Rec gEmptyRec; }; /// Creates a new string and writes into it using a printf()-style format. SkString SkStringPrintf(const char* format, ...) SK_PRINTF_LIKE(1, 2); /// This makes it easier to write a caller as a VAR_ARGS function where the format string is /// optional. static inline SkString SkStringPrintf() { return SkString(); } static inline void swap(SkString& a, SkString& b) { a.swap(b); } enum SkStrSplitMode { // Strictly return all results. If the input is ",," and the separator is ',' this will return // an array of three empty strings. kStrict_SkStrSplitMode, // Only nonempty results will be added to the results. Multiple separators will be // coalesced. Separators at the beginning and end of the input will be ignored. If the input is // ",," and the separator is ',', this will return an empty vector. kCoalesce_SkStrSplitMode }; // Split str on any characters in delimiters into out. (Think, strtok with a sane API.) void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, SkTArray* out); inline void SkStrSplit(const char* str, const char* delimiters, SkTArray* out) { SkStrSplit(str, delimiters, kCoalesce_SkStrSplitMode, out); } #endif