/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkFilterQuality.h" #include "include/core/SkFont.h" #include "include/core/SkFontStyle.h" #include "include/core/SkFontTypes.h" #include "include/core/SkImage.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPixmap.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTypeface.h" #include "include/core/SkTypes.h" #include "include/core/SkYUVAIndex.h" #include "include/core/SkYUVASizeInfo.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrConfig.h" #include "include/gpu/GrDirectContext.h" #include "include/gpu/GrRecordingContext.h" #include "include/gpu/GrTypes.h" #include "include/private/GrTypesPriv.h" #include "include/private/SkTArray.h" #include "include/private/SkTDArray.h" #include "include/private/SkTemplates.h" #include "include/utils/SkTextUtils.h" #include "src/core/SkYUVMath.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "tools/ToolUtils.h" #include "tools/gpu/YUVUtils.h" #include #include #include #include #include using sk_gpu_test::YUVABackendReleaseContext; class GrRenderTargetContext; static const int kTileWidthHeight = 128; static const int kLabelWidth = 64; static const int kLabelHeight = 32; static const int kDomainPadding = 8; static const int kPad = 1; enum YUVFormat { // 4:2:0 formats, 24 bpp kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures) // 4:2:0 formats, "15 bpp" (but really 24 bpp) kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout // except that the bottom 6 bits are zeroed out (2 textures) // TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its // fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though). // This is laid out the same as kP016 and kP010 but uses F16 unstead of U16. In this case // the 10 bits/channel vs 16 bits/channel distinction isn't relevant. kP016F_YUVFormat, // 4:4:4 formats, 64 bpp kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture) // 4:4:4 formats, 32 bpp kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture) kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture) // 4:2:0 formats, 12 bpp kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures) kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures) kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures) kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures) kLast_YUVFormat = kYV12_YUVFormat }; class YUVAPlanarConfig { public: struct YUVALocation { int fPlaneIdx = -1; int fChannelIdx = -1; }; enum class YUVAChannel { kY, kU, kV, kA }; explicit YUVAPlanarConfig(const std::initializer_list& yuvaLocations); constexpr int numPlanes() const { return fNumPlanes; } int planeIndex(YUVAChannel c) const { return fLocations[static_cast(c)].fPlaneIdx; } int channelIndex(YUVAChannel c) const { return fLocations[static_cast(c)].fChannelIdx; } constexpr bool hasAlpha() const { return fLocations[3].fPlaneIdx >= 0; } /** * Given a mask of SkColorChannelFlags choose a channel by index. Legal 'channelMask' values * are: * kAlpha, kGray, kRed, kRG, kRGB, kRGBA. * The channel index must be less than the number of bits set in the mask. The index order is * the order listed above (e.g. if 'channelMask' is kRGB and 'channelIdx' is 1 then * SkColorChannel::kG is returned as 'channel'). The function fails if 'channelMask' is not one * of the listed allowed values or 'channelIdx' is invalid for the mask. */ static bool ChannelIndexToChannel(uint32_t channelMask, int channelIdx, SkColorChannel* channel); /** * Goes from channel indices to actual channels given texture formats. Also supports adding * on an external alpha plane if this format doesn't already have alpha. The extra alpha texture * must be the last texture and the channel index is assumed to be 0. */ bool getYUVAIndices(const GrBackendTexture textures[], int numTextures, bool externalAlphaPlane, SkYUVAIndex indices[4]) const; /** Same as above but with pixmaps instead of textures. */ bool getYUVAIndices(const SkBitmap planes[], int numBitmaps, bool externalAlphaPlane, SkYUVAIndex indices[4]) const; private: bool getYUVAIndices(const uint32_t channelMasks[], int numPlanes, bool externalAlphaPlane, SkYUVAIndex indices[4]) const; YUVALocation fLocations[4] = {}; int fNumPlanes = 0; }; YUVAPlanarConfig::YUVAPlanarConfig(const std::initializer_list& yuvaLocations) { SkASSERT(yuvaLocations.size() == 3 || yuvaLocations.size() == 4); uint32_t planeMask[5] = {}; int l = 0; for (const auto& location : yuvaLocations) { SkASSERT(location.fChannelIdx >= 0 && location.fChannelIdx <= 3); SkASSERT(location.fPlaneIdx >= 0 && location.fPlaneIdx <= 3); fLocations[l++] = location; fNumPlanes = std::max(fNumPlanes, location.fPlaneIdx + 1); int mask = 1 << location.fChannelIdx; SkASSERT(!(planeMask[location.fPlaneIdx] & mask)); planeMask[location.fPlaneIdx] |= mask; } // Check that no plane is skipped and channel usage in each plane is tightly packed. for (int i = 0; i < fNumPlanes; ++i) { switch (planeMask[i]) { case 0b0001: break; case 0b0011: break; case 0b0111: break; case 0b1111: break; default: SK_ABORT("Illegal channel configuration. " "Maximum of 4 channels per plane. " "No skipped channels in any plane."); } } } bool YUVAPlanarConfig::ChannelIndexToChannel(uint32_t channelFlags, int channelIdx, SkColorChannel* channel) { switch (channelFlags) { case kGray_SkColorChannelFlag: // For gray returning any of R, G, or B for index 0 is ok. case kRed_SkColorChannelFlag: if (channelIdx == 0) { *channel = SkColorChannel::kR; return true; } return false; case kAlpha_SkColorChannelFlag: if (channelIdx == 0) { *channel = SkColorChannel::kA; return true; } return false; case kRG_SkColorChannelFlags: if (channelIdx == 0 || channelIdx == 1) { *channel = static_cast(channelIdx); return true; } return false; case kRGB_SkColorChannelFlags: if (channelIdx >= 0 && channelIdx <= 2) { *channel = static_cast(channelIdx); return true; } return false; case kRGBA_SkColorChannelFlags: if (channelIdx >= 0 && channelIdx <= 3) { *channel = static_cast(channelIdx); return true; } return false; default: return false; } } bool YUVAPlanarConfig::getYUVAIndices(const GrBackendTexture textures[], int numTextures, bool externalAlphaPlane, SkYUVAIndex indices[4]) const { uint32_t channelMasks[4] = {}; for (int i = 0; i < numTextures; ++i) { channelMasks[i] = textures[i].getBackendFormat().channelMask(); } return this->getYUVAIndices(channelMasks, numTextures, externalAlphaPlane, indices); } bool YUVAPlanarConfig::getYUVAIndices(const SkBitmap bitmaps[], int numBitmaps, bool externalAlphaPlane, SkYUVAIndex indices[4]) const { uint32_t channelMasks[4] = {}; for (int i = 0; i < numBitmaps; ++i) { channelMasks[i] = SkColorTypeChannelFlags(bitmaps[i].colorType()); } return this->getYUVAIndices(channelMasks, numBitmaps, externalAlphaPlane, indices); } bool YUVAPlanarConfig::getYUVAIndices(const uint32_t planeChannelMasks[], int numPlanes, bool externalAlphaPlane, SkYUVAIndex indices[4]) const { if (this->hasAlpha() && externalAlphaPlane) { return false; } if (numPlanes != fNumPlanes + SkToInt(externalAlphaPlane)) { return false; } for (int i = 0; i < 4; ++i) { int plane = fLocations[i].fPlaneIdx; if (plane < 0) { indices[i].fIndex = -1; indices[i].fChannel = SkColorChannel::kR; } else { indices[i].fIndex = plane; if (!ChannelIndexToChannel(planeChannelMasks[plane], fLocations[i].fChannelIdx, &indices[i].fChannel)) { return false; } } } if (externalAlphaPlane) { if (!ChannelIndexToChannel(planeChannelMasks[numPlanes - 1], 0, &indices[3].fChannel)) { return false; } indices[3].fIndex = numPlanes - 1; } SkDEBUGCODE(int checkNumPlanes;) SkASSERT(SkYUVAIndex::AreValidIndices(indices, &checkNumPlanes)); SkASSERT(checkNumPlanes == numPlanes); return true; } static const YUVAPlanarConfig& YUVAFormatPlanarConfig(YUVFormat format) { switch (format) { case kP016_YUVFormat: // These all share the same plane/channel indices. case kP010_YUVFormat: case kP016F_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {1, 1}}); return kConfig; } case kY416_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 1}, {0, 0}, {0, 2}, {0, 3}}); return kConfig; } case kAYUV_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {0, 1}, {0, 2}, {0, 3}}); return kConfig; } case kY410_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 1}, {0, 0}, {0, 2}, {0, 3}}); return kConfig; } case kNV12_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {1, 1}}); return kConfig; } case kNV21_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {1, 1}, {1, 0}}); return kConfig; } case kI420_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {2, 0}}); return kConfig; } case kYV12_YUVFormat: { static const YUVAPlanarConfig kConfig({{0, 0}, {2, 0}, {1, 0}}); return kConfig; } } SkUNREACHABLE; } static bool is_colorType_texturable(const GrCaps* caps, GrColorType ct) { GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kNo); if (!format.isValid()) { return false; } return caps->isFormatTexturable(format); } static bool is_format_natively_supported(GrRecordingContext* context, YUVFormat yuvFormat) { const GrCaps* caps = context->priv().caps(); switch (yuvFormat) { case kP016_YUVFormat: // fall through case kP010_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_16) && is_colorType_texturable(caps, GrColorType::kRG_1616); case kP016F_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_F16) && is_colorType_texturable(caps, GrColorType::kRG_F16); case kY416_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_16161616); case kAYUV_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_8888); case kY410_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_1010102); case kNV12_YUVFormat: // fall through case kNV21_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8) && is_colorType_texturable(caps, GrColorType::kRG_88); case kI420_YUVFormat: // fall through case kYV12_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8); } SkUNREACHABLE; } // All the planes we need to construct the various YUV formats struct PlaneData { SkBitmap fYFull; SkBitmap fUFull; SkBitmap fVFull; SkBitmap fAFull; SkBitmap fUQuarter; // 2x2 downsampled U channel SkBitmap fVQuarter; // 2x2 downsampled V channel SkBitmap fFull; SkBitmap fQuarter; // 2x2 downsampled YUVA }; // Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle // and have tangents 'v1' and 'v2'. static void add_arc(SkPath* path, const SkPoint& o1, const SkVector& v1, const SkPoint& o2, const SkVector& v2, SkTDArray* circles, bool takeLongWayRound) { SkVector v3 = { -v1.fY, v1.fX }; SkVector v4 = { v2.fY, -v2.fX }; SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4); SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY }; SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t }; if (circles) { circles->push_back(r); } SkVector startV = o1 - center, endV = o2 - center; startV.normalize(); endV.normalize(); SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX)); SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX)); startDeg += 360.0f; startDeg = fmodf(startDeg, 360.0f); endDeg += 360.0f; endDeg = fmodf(endDeg, 360.0f); if (endDeg < startDeg) { endDeg += 360.0f; } SkScalar sweepDeg = SkTAbs(endDeg - startDeg); if (!takeLongWayRound) { sweepDeg = sweepDeg - 360; } path->arcTo(r, startDeg, sweepDeg, false); } static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius, SkScalar ratio, int numLobes, SkTDArray* circles) { if (numLobes <= 1) { return SkPath(); } SkPath p; int numDivisions = 2 * numLobes; SkScalar fullLobeDegrees = 360.0f / numLobes; SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f); SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f); SkMatrix outerStep, innerStep; outerStep.setRotate(outDegrees); innerStep.setRotate(innerDegrees); SkVector curV = SkVector::Make(0.0f, 1.0f); if (circles) { circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius, o.fX + innerRadius, o.fY + innerRadius)); } p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); for (int i = 0; i < numDivisions; ++i) { SkVector nextV; if (0 == (i % 2)) { nextV = outerStep.mapVector(curV.fX, curV.fY); SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX, o.fY + outerRadius * curV.fY); SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX, o.fY + outerRadius * nextV.fY); p.lineTo(top); add_arc(&p, top, curV, nextTop, nextV, circles, true); } else { nextV = innerStep.mapVector(curV.fX, curV.fY); SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX, o.fY + innerRadius * nextV.fY); p.lineTo(bot); add_arc(&p, bot, curV, nextBot, nextV, nullptr, false); } curV = nextV; } p.close(); return p; } static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path, const SkTDArray& circles, bool opaque, bool padWithRed) { const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104)); const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252)); const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117)); int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kDomainPadding : 0); SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight, colorType, kPremul_SkAlphaType); SkBitmap bm; bm.allocPixels(ii); std::unique_ptr canvas = SkCanvas::MakeRasterDirect(ii, bm.getPixels(), bm.rowBytes()); if (padWithRed) { canvas->clear(SK_ColorRED); canvas->translate(kDomainPadding, kDomainPadding); canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight)); } canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT); SkPaint paint; paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency paint.setColor(kBlue); canvas->drawPath(path, paint); paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT); paint.setBlendMode(SkBlendMode::kSrc); for (int i = 0; i < circles.count(); ++i) { SkRect r = circles[i]; r.inset(r.width()/4, r.height()/4); canvas->drawOval(r, paint); } return bm; } static void convert_rgba_to_yuva(const float mtx[20], SkColor col, uint8_t yuv[4]) { const uint8_t r = SkColorGetR(col); const uint8_t g = SkColorGetG(col); const uint8_t b = SkColorGetB(col); yuv[0] = SkTPin(SkScalarRoundToInt(mtx[ 0]*r + mtx[ 1]*g + mtx[ 2]*b + mtx[ 4]*255), 0, 255); yuv[1] = SkTPin(SkScalarRoundToInt(mtx[ 5]*r + mtx[ 6]*g + mtx[ 7]*b + mtx[ 9]*255), 0, 255); yuv[2] = SkTPin(SkScalarRoundToInt(mtx[10]*r + mtx[11]*g + mtx[12]*b + mtx[14]*255), 0, 255); yuv[3] = SkColorGetA(col); } static SkPMColor convert_yuva_to_rgba(const float mtx[20], uint8_t yuva[4]) { uint8_t y = yuva[0]; uint8_t u = yuva[1]; uint8_t v = yuva[2]; uint8_t a = yuva[3]; uint8_t r = SkTPin(SkScalarRoundToInt(mtx[ 0]*y + mtx[ 1]*u + mtx[ 2]*v + mtx[ 4]*255), 0, 255); uint8_t g = SkTPin(SkScalarRoundToInt(mtx[ 5]*y + mtx[ 6]*u + mtx[ 7]*v + mtx[ 9]*255), 0, 255); uint8_t b = SkTPin(SkScalarRoundToInt(mtx[10]*y + mtx[11]*u + mtx[12]*v + mtx[14]*255), 0, 255); return SkPremultiplyARGBInline(a, r, g, b); } static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) { if (kIdentity_SkYUVColorSpace == yuvColorSpace) { // To test the identity color space we use JPEG YUV planes yuvColorSpace = kJPEG_SkYUVColorSpace; } SkASSERT(!(bm.width() % 2)); SkASSERT(!(bm.height() % 2)); planes->fYFull.allocPixels( SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fUFull.allocPixels( SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVFull.allocPixels( SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fUQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fFull.allocPixels( SkImageInfo::Make(bm.dimensions(), kRGBA_F32_SkColorType, kUnpremul_SkAlphaType)); planes->fQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType)); float mtx[20]; SkColorMatrix_RGB2YUV(yuvColorSpace, mtx); SkColor4f* dst = (SkColor4f *) planes->fFull.getAddr(0, 0); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor col = bm.getColor(x, y); uint8_t yuva[4]; convert_rgba_to_yuva(mtx, col, yuva); *planes->fYFull.getAddr8(x, y) = yuva[0]; *planes->fUFull.getAddr8(x, y) = yuva[1]; *planes->fVFull.getAddr8(x, y) = yuva[2]; *planes->fAFull.getAddr8(x, y) = yuva[3]; // TODO: render in F32 rather than converting here dst->fR = yuva[0] / 255.0f; dst->fG = yuva[1] / 255.0f; dst->fB = yuva[2] / 255.0f; dst->fA = yuva[3] / 255.0f; ++dst; } } dst = (SkColor4f *) planes->fQuarter.getAddr(0, 0); for (int y = 0; y < bm.height()/2; ++y) { for (int x = 0; x < bm.width()/2; ++x) { uint32_t yAccum = 0, uAccum = 0, vAccum = 0, aAccum = 0; yAccum += *planes->fYFull.getAddr8(2*x, 2*y); yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y); yAccum += *planes->fYFull.getAddr8(2*x, 2*y+1); yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x, 2*y); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y); uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1); *planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f; vAccum += *planes->fVFull.getAddr8(2*x, 2*y); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y); vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1); *planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f; aAccum += *planes->fAFull.getAddr8(2*x, 2*y); aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y); aAccum += *planes->fAFull.getAddr8(2*x, 2*y+1); aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y+1); // TODO: render in F32 rather than converting here dst->fR = yAccum / (4.0f * 255.0f); dst->fG = uAccum / (4.0f * 255.0f); dst->fB = vAccum / (4.0f * 255.0f); dst->fA = aAccum / (4.0f * 255.0f); ++dst; } } } // Create a 2x2 downsampled SkBitmap. It is stored in an RG texture. It can optionally be // uv (i.e., NV12) or vu (i.e., NV21). static SkBitmap make_quarter_2_channel(const SkBitmap& fullY, const SkBitmap& quarterU, const SkBitmap& quarterV, bool uv) { SkBitmap result; result.allocPixels(SkImageInfo::Make(fullY.width()/2, fullY.height()/2, kR8G8_unorm_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < fullY.height()/2; ++y) { for (int x = 0; x < fullY.width()/2; ++x) { uint8_t u8 = *quarterU.getAddr8(x, y); uint8_t v8 = *quarterV.getAddr8(x, y); if (uv) { *result.getAddr16(x, y) = (v8 << 8) | u8; } else { *result.getAddr16(x, y) = (u8 << 8) | v8; } } } return result; } // Create some flavor of a 16bits/channel bitmap from a RGBA_F32 source static SkBitmap make_16(const SkBitmap& src, SkColorType dstCT, std::function convert) { SkASSERT(src.colorType() == kRGBA_F32_SkColorType); SkBitmap result; result.allocPixels(SkImageInfo::Make(src.dimensions(), dstCT, kUnpremul_SkAlphaType)); for (int y = 0; y < src.height(); ++y) { for (int x = 0; x < src.width(); ++x) { const float* srcPixel = (const float*) src.getAddr(x, y); uint16_t* dstPixel = (uint16_t*) result.getAddr(x, y); convert(dstPixel, srcPixel); } } return result; } static uint16_t flt_2_uint16(float flt) { return SkScalarRoundToInt(flt * 65535.0f); } // Recombine the separate planes into some YUV format. Returns the number of planes. static int create_YUV(const PlaneData& planes, YUVFormat yuvFormat, SkBitmap resultBMs[], bool opaque) { int nextLayer = 0; switch (yuvFormat) { case kY416_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kR16G16B16A16_unorm_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = flt_2_uint16(srcPixel[1]); // U dstPixel[1] = flt_2_uint16(srcPixel[0]); // Y dstPixel[2] = flt_2_uint16(srcPixel[2]); // V dstPixel[3] = flt_2_uint16(srcPixel[3]); // A }); break; } case kAYUV_YUVFormat: { SkBitmap yuvaFull; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { uint8_t Y = *planes.fYFull.getAddr8(x, y); uint8_t U = *planes.fUFull.getAddr8(x, y); uint8_t V = *planes.fVFull.getAddr8(x, y); uint8_t A = *planes.fAFull.getAddr8(x, y); // NOT premul! // V and Y swapped to match RGBA layout SkColor c = SkColorSetARGB(A, V, U, Y); *yuvaFull.getAddr32(x, y) = c; } } resultBMs[nextLayer++] = yuvaFull; break; } case kY410_YUVFormat: { SkBitmap yuvaFull; uint32_t Y, U, V; uint8_t A; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_1010102_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f); U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f); V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f); A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f); // NOT premul! *yuvaFull.getAddr32(x, y) = (A << 30) | (V << 20) | (Y << 10) | (U << 0); } } resultBMs[nextLayer++] = yuvaFull; break; } case kP016_YUVFormat: // fall through case kP010_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t val16 = flt_2_uint16(srcPixel[0]); dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0) : val16; }); resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t u16 = flt_2_uint16(srcPixel[1]); uint16_t v16 = flt_2_uint16(srcPixel[2]); dstPixel[0] = tenBitsPP ? (u16 & 0xFFC0) : u16; dstPixel[1] = tenBitsPP ? (v16 & 0xFFC0) : v16; }); if (!opaque) { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t val16 = flt_2_uint16(srcPixel[3]); dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0) : val16; }); } return nextLayer; } case kP016F_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[0]); }); resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[1]); dstPixel[1] = SkFloatToHalf(srcPixel[2]); }); if (!opaque) { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[3]); }); } return nextLayer; } case kNV12_YUVFormat: { SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, true); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = uvQuarter; break; } case kNV21_YUVFormat: { SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, false); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = vuQuarter; break; } case kI420_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fUQuarter; resultBMs[nextLayer++] = planes.fVQuarter; break; case kYV12_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fVQuarter; resultBMs[nextLayer++] = planes.fUQuarter; break; } if (!YUVAFormatPlanarConfig(yuvFormat).hasAlpha() && !opaque) { resultBMs[nextLayer++] = planes.fAFull; } return nextLayer; } static uint8_t look_up(float x1, float y1, const SkBitmap& bm, int channelIdx) { SkASSERT(x1 > 0 && x1 < 1.0f); SkASSERT(y1 > 0 && y1 < 1.0f); int x = SkScalarFloorToInt(x1 * bm.width()); int y = SkScalarFloorToInt(y1 * bm.height()); auto channelMask = SkColorTypeChannelFlags(bm.colorType()); SkColorChannel channel; SkAssertResult(YUVAPlanarConfig::ChannelIndexToChannel(channelMask, channelIdx, &channel)); auto ii = SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, bm.alphaType(), bm.refColorSpace()); uint32_t pixel; SkAssertResult(bm.readPixels(ii, &pixel, sizeof(pixel), x, y)); int shift = static_cast(channel) * 8; return static_cast((pixel >> shift) & 0xff); } class YUVGenerator : public SkImageGenerator { public: YUVGenerator(const SkImageInfo& ii, SkYUVColorSpace yuvColorSpace, YUVFormat yuvFormat, bool externalAlphaPlane, SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount]) : SkImageGenerator(ii) , fYUVFormat(yuvFormat) , fYUVColorSpace(yuvColorSpace) , fExternalAlphaPlane(externalAlphaPlane) , fAllA8(true) { SkASSERT(!externalAlphaPlane || !YUVAFormatPlanarConfig(fYUVFormat).hasAlpha()); int numPlanes = this->numPlanes(); for (int i = 0; i < numPlanes; ++i) { fYUVBitmaps[i] = bitmaps[i]; if (kAlpha_8_SkColorType != fYUVBitmaps[i].colorType()) { fAllA8 = false; } } } protected: bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes, const Options&) override { if (kUnknown_SkColorType == fFlattened.colorType()) { fFlattened.allocPixels(info); SkASSERT(kN32_SkColorType == info.colorType()); SkASSERT(kPremul_SkAlphaType == info.alphaType()); float mtx[20]; SkColorMatrix_YUV2RGB(fYUVColorSpace, mtx); for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { float x1 = (x + 0.5f) / info.width(); float y1 = (y + 0.5f) / info.height(); uint8_t yuva[4] = {0, 0, 0, 255}; const auto& planarConfig = YUVAFormatPlanarConfig(fYUVFormat); using YUVAChannel = YUVAPlanarConfig::YUVAChannel; for (auto c : {YUVAChannel::kY, YUVAChannel::kU, YUVAChannel::kV}) { const auto& bmp = fYUVBitmaps[planarConfig.planeIndex(c)]; int channelIdx = planarConfig.channelIndex(c); yuva[static_cast(c)] = look_up(x1, y1, bmp, channelIdx); } if (planarConfig.hasAlpha()) { const auto& bmp = fYUVBitmaps[planarConfig.planeIndex(YUVAChannel::kA)]; int channelIdx = planarConfig.channelIndex(YUVAChannel::kA); yuva[3] = look_up(x1, y1, bmp, channelIdx); } else if (fExternalAlphaPlane) { const auto& bmp = fYUVBitmaps[this->numPlanes() - 1]; yuva[3] = look_up(x1, y1, bmp, 0); } // Making premul here. *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba(mtx, yuva); } } } return fFlattened.readPixels(info, pixels, rowBytes, 0, 0); } bool onQueryYUVA8(SkYUVASizeInfo* size, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkYUVColorSpace* yuvColorSpace) const override { if (!fAllA8) { return false; } const auto& planarConfig = YUVAFormatPlanarConfig(fYUVFormat); if (!planarConfig.getYUVAIndices(fYUVBitmaps, this->numPlanes(), fExternalAlphaPlane, yuvaIndices)) { return false; } *yuvColorSpace = fYUVColorSpace; int numPlanes = this->numPlanes(); int i = 0; for (; i < numPlanes; ++i) { size->fSizes[i].fWidth = fYUVBitmaps[i].width(); size->fSizes[i].fHeight = fYUVBitmaps[i].height(); size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes(); } for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) { size->fSizes[i].fWidth = 0; size->fSizes[i].fHeight = 0; size->fWidthBytes[i] = 0; } return true; } bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount], void* planes[SkYUVASizeInfo::kMaxCount]) override { SkASSERT(fAllA8); int numPlanes = this->numPlanes(); for (int i = 0; i < numPlanes; ++i) { planes[i] = fYUVBitmaps[i].getPixels(); } return true; } private: int numPlanes() const { return YUVAFormatPlanarConfig(fYUVFormat).numPlanes() + SkToInt(fExternalAlphaPlane); } YUVFormat fYUVFormat; SkYUVColorSpace fYUVColorSpace; bool fExternalAlphaPlane; SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount]; SkBitmap fFlattened; bool fAllA8; // are all the SkBitmaps in "fYUVBitmaps" A8? }; static sk_sp make_yuv_gen_image(const SkImageInfo& ii, YUVFormat yuvFormat, SkYUVColorSpace yuvColorSpace, bool opaque, SkBitmap bitmaps[]) { bool externalAlphaPlane = !opaque && !YUVAFormatPlanarConfig(yuvFormat).hasAlpha(); std::unique_ptr gen( new YUVGenerator(ii, yuvColorSpace, yuvFormat, externalAlphaPlane, bitmaps)); return SkImage::MakeFromGenerator(std::move(gen)); } static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) { static const char* kYUVColorSpaceNames[] = {"JPEG", "601", "709F", "709L", "2020_8F", "2020_8L", "2020_10F", "2020_10L", "2020_12F", "2020_12L", "Identity"}; static_assert(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace + 1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString colLabel; colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); int y = textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); colLabel.printf("%s", opaque ? "Opaque" : "Transparent"); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); y += textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); } static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) { static const char* kYUVFormatNames[] = { "P016", "P010", "P016F", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12" }; static_assert(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat + 1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString rowLabel; rowLabel.printf("%s", kYUVFormatNames[yuvFormat]); font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect); y += kTileWidthHeight/2 + textRect.height()/2; canvas->drawString(rowLabel, 0, y, font, paint); } static GrBackendTexture create_yuva_texture(GrDirectContext* context, const SkBitmap& bm, int index, YUVABackendReleaseContext* releaseContext) { return context->createBackendTexture(bm.pixmap(), GrRenderable::kNo, GrProtected::kNo, YUVABackendReleaseContext::CreationCompleteProc(index), releaseContext); } static sk_sp yuv_to_rgb_colorfilter() { static const float kJPEGConversionMatrix[20] = { 1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255, 1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255, 1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; return SkColorFilters::Matrix(kJPEGConversionMatrix); } // Get the SkColorType to use when creating an SkSurface wrapping 'format'. static SkColorType get_color_type(const GrBackendFormat& format) { GrGLFormat glFormat = format.asGLFormat(); if (GrGLFormat::kUnknown != glFormat) { switch (glFormat) { case GrGLFormat::kLUMINANCE8: // fall through case GrGLFormat::kR8: // fall through case GrGLFormat::kALPHA8: return kAlpha_8_SkColorType; case GrGLFormat::kRG8: return kR8G8_unorm_SkColorType; case GrGLFormat::kRGB8: return kRGB_888x_SkColorType; case GrGLFormat::kRGBA8: return kRGBA_8888_SkColorType; case GrGLFormat::kBGRA8: return kBGRA_8888_SkColorType; case GrGLFormat::kRGB10_A2: return kRGBA_1010102_SkColorType; case GrGLFormat::kLUMINANCE16F: // fall through case GrGLFormat::kR16F: return kA16_float_SkColorType; case GrGLFormat::kRG16F: return kR16G16_float_SkColorType; case GrGLFormat::kR16: return kA16_unorm_SkColorType; case GrGLFormat::kRG16: return kR16G16_unorm_SkColorType; case GrGLFormat::kRGBA16: return kR16G16B16A16_unorm_SkColorType; default: return kUnknown_SkColorType; } SkUNREACHABLE; } VkFormat vkFormat; if (format.asVkFormat(&vkFormat)) { switch (vkFormat) { case VK_FORMAT_R8_UNORM: return kAlpha_8_SkColorType; case VK_FORMAT_R8G8_UNORM: return kR8G8_unorm_SkColorType; case VK_FORMAT_R8G8B8_UNORM: return kRGB_888x_SkColorType; case VK_FORMAT_R8G8B8A8_UNORM: return kRGBA_8888_SkColorType; case VK_FORMAT_B8G8R8A8_UNORM: return kBGRA_8888_SkColorType; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return kRGBA_1010102_SkColorType; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: return kBGRA_1010102_SkColorType; case VK_FORMAT_R16_SFLOAT: return kA16_float_SkColorType; case VK_FORMAT_R16G16_SFLOAT: return kR16G16_float_SkColorType; case VK_FORMAT_R16_UNORM: return kA16_unorm_SkColorType; case VK_FORMAT_R16G16_UNORM: return kR16G16_unorm_SkColorType; case VK_FORMAT_R16G16B16A16_UNORM: return kR16G16B16A16_unorm_SkColorType; default: return kUnknown_SkColorType; } SkUNREACHABLE; } return kUnknown_SkColorType; } namespace skiagm { // This GM creates an opaque and transparent bitmap, extracts the planes and then recombines // them into various YUV formats. It then renders the results in the grid: // // JPEG 601 709 Identity // Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque // originals // P016 // P010 // P016F // Y416 // AYUV // Y410 // NV12 // NV21 // I420 // YV12 class WackyYUVFormatsGM : public GM { public: WackyYUVFormatsGM(bool useTargetColorSpace, bool useDomain, bool quarterSize) : fUseTargetColorSpace(useTargetColorSpace) , fUseDomain(useDomain) , fQuarterSize(quarterSize) { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { SkString name("wacky_yuv_formats"); if (fUseTargetColorSpace) { name += "_cs"; } if (fUseDomain) { name += "_domain"; } if (fQuarterSize) { name += "_qtr"; } return name; } SkISize onISize() override { int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x #-color-spaces int numRows = 1 + (kLast_YUVFormat + 1); // original + #-yuv-formats int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseDomain ? 1.5f : 1.f)); return SkISize::Make(kLabelWidth + numCols * (wh + kPad), kLabelHeight + numRows * (wh + kPad)); } void createBitmaps() { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseDomain); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseDomain); } if (fUseTargetColorSpace) { fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } } // Resize all the backend textures in 'yuvaTextures' to a quarter their size. sk_sp resizeOnGpu(GrDirectContext* dContext, YUVFormat yuvFormat, SkYUVColorSpace yuvColorSpace, bool opaque, const GrBackendTexture yuvaTextures[], const SkYUVAIndex yuvaIndices[4], int numTextures, SkISize imageSize) { auto releaseContext = new YUVABackendReleaseContext(dContext); for (int i = 0; i < numTextures; ++i) { const GrBackendTexture& curTex = yuvaTextures[i]; SkColorType ct = get_color_type(curTex.getBackendFormat()); if (ct == kUnknown_SkColorType || !dContext->colorTypeSupportedAsSurface(ct)) { YUVABackendReleaseContext::Unwind(dContext, releaseContext, true); return nullptr; } if (ct == kRGBA_8888_SkColorType || ct == kRGBA_1010102_SkColorType) { // We disallow resizing AYUV and Y410 formats on the GPU bc resizing them w/ a // premul draw combines the YUV channels w/ the A channel in an inappropriate // manner. YUVABackendReleaseContext::Unwind(dContext, releaseContext, true); return nullptr; } SkISize shrunkPlaneSize = {curTex.width() / 2, curTex.height() / 2 }; sk_sp wrappedOrig = SkImage::MakeFromTexture(dContext, curTex, kTopLeft_GrSurfaceOrigin, ct, kPremul_SkAlphaType, nullptr /* colorSpace */, nullptr /* releaseProc */, nullptr /* releaseContext */); GrBackendTexture tmp = dContext->createBackendTexture(shrunkPlaneSize.width(), shrunkPlaneSize.height(), curTex.getBackendFormat(), GrMipmapped::kNo, GrRenderable::kYes); if (!tmp.isValid()) { YUVABackendReleaseContext::Unwind(dContext, releaseContext, true); return nullptr; } releaseContext->set(i, tmp); // uninitialized beTextures don't have any pending work releaseContext->setCreationComplete(i); sk_sp s = SkSurface::MakeFromBackendTexture(dContext, tmp, kTopLeft_GrSurfaceOrigin, 0, ct, nullptr, nullptr); if (!s) { YUVABackendReleaseContext::Unwind(dContext, releaseContext, true); return nullptr; } SkCanvas* c = s->getCanvas(); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); c->drawImageRect(wrappedOrig, SkRect::MakeWH(shrunkPlaneSize.width(), shrunkPlaneSize.height()), &paint); s->flushAndSubmit(); } SkISize shrunkImageSize = { imageSize.width() / 2, imageSize.height() / 2 }; return SkImage::MakeFromYUVATextures(dContext, yuvColorSpace, releaseContext->beTextures(), yuvaIndices, shrunkImageSize, kTopLeft_GrSurfaceOrigin, nullptr, YUVABackendReleaseContext::Release, releaseContext); } bool createImages(GrDirectContext* dContext) { int counter = 0; for (bool opaque : { false, true }) { for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { PlaneData planes; extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes); for (int f = kP016_YUVFormat; f <= kLast_YUVFormat; ++f) { auto format = static_cast(f); SkBitmap resultBMs[4]; int numTextures = create_YUV(planes, format, resultBMs, opaque); if (dContext) { fGpuGeneratedImages = true; if (dContext->abandoned()) { return false; } if (!is_format_natively_supported(dContext, format)) { continue; } auto releaseCtx = new YUVABackendReleaseContext(dContext); for (int i = 0; i < numTextures; ++i) { GrBackendTexture tmp = create_yuva_texture(dContext, resultBMs[i], i, releaseCtx); if (!tmp.isValid()) { YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false); return false; } releaseCtx->set(i, tmp); } SkYUVAIndex yuvaIndices[4]; const auto& planarConfig = YUVAFormatPlanarConfig(format); bool externalAlphaPlane = !opaque && !planarConfig.hasAlpha(); if (!planarConfig.getYUVAIndices(releaseCtx->beTextures(), numTextures, externalAlphaPlane, yuvaIndices)) { YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false); continue; } if (fQuarterSize) { fImages[opaque][cs][format] = this->resizeOnGpu(dContext, format, (SkYUVColorSpace)cs, opaque, releaseCtx->beTextures(), yuvaIndices, numTextures, fOriginalBMs[opaque].dimensions()); YUVABackendReleaseContext::Unwind(dContext, releaseCtx, true); } else { int counterMod = counter % 3; if (fUseDomain && counterMod == 0) { // Copies flatten to RGB when they copy the YUVA data, which doesn't // know about the intended domain and the domain padding bleeds in counterMod = 1; } const SkISize imgSize { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }; switch (counterMod) { case 0: fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy( dContext, (SkYUVColorSpace)cs, releaseCtx->beTextures(), yuvaIndices, imgSize, kTopLeft_GrSurfaceOrigin); YUVABackendReleaseContext::Unwind(dContext, releaseCtx, true); break; case 1: fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures( dContext, (SkYUVColorSpace)cs, releaseCtx->beTextures(), yuvaIndices, imgSize, kTopLeft_GrSurfaceOrigin, nullptr, YUVABackendReleaseContext::Release, releaseCtx); break; case 2: default: { // TODO: we did a lot of work to delete these here YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false); SkPixmap yuvaPixmaps[4]; for (int i = 0; i < numTextures; ++i) { yuvaPixmaps[i] = resultBMs[i].pixmap(); } fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps( dContext, (SkYUVColorSpace)cs, yuvaPixmaps, yuvaIndices, imgSize, kTopLeft_GrSurfaceOrigin, true); break; } } ++counter; } } else { SkImageInfo ii = SkImageInfo::MakeN32(fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height(), kPremul_SkAlphaType); fImages[opaque][cs][format] = make_yuv_gen_image( ii, format, (SkYUVColorSpace)cs, opaque, resultBMs); } } } } if (dContext) { // Some backends (e.g., Vulkan) require all work be completed for backend textures // before they are deleted. Since we don't know when we'll next have access to a // direct context, flush all the work now. dContext->flush(); dContext->submit(true); } return true; } DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override { this->createBitmaps(); if (dContext && dContext->abandoned()) { // This isn't a GpuGM so a null 'context' is okay but an abandoned context // if forbidden. return DrawResult::kSkip; } if (!this->createImages(dContext)) { *errorMsg = "Failed to create YUV images"; return DrawResult::kFail; } return DrawResult::kOk; } void onGpuTeardown() override { for (int i = 0; i < 2; ++i) { for (int j = 0; j <= kLastEnum_SkYUVColorSpace; ++j) { for (int k = 0; k <= kLast_YUVFormat; ++k) { fImages[i][j][k] = nullptr; } } } } void onDraw(SkCanvas* canvas) override { float cellWidth = kTileWidthHeight, cellHeight = kTileWidthHeight; if (fUseDomain) { cellWidth *= 1.5f; cellHeight *= 1.5f; } auto direct = GrAsDirectContext(canvas->recordingContext()); SkRect origSrcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height()); SkRect srcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height()); SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height()); if (fQuarterSize) { if (fGpuGeneratedImages) { // The src is only shrunk on the GPU srcRect = SkRect::MakeWH(fOriginalBMs[0].width()/2.0f, fOriginalBMs[0].height()/2.0f); } // but the dest is always drawn smaller dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, fOriginalBMs[0].width()/2.0f, fOriginalBMs[0].height()/2.0f); } SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint; if (fUseDomain) { srcRect.inset(kDomainPadding, kDomainPadding); origSrcRect.inset(kDomainPadding, kDomainPadding); // Draw a larger rectangle to ensure bilerp filtering would normally read outside the // srcRect and hit the red pixels, if strict constraint weren't used. dstRect.fRight = kLabelWidth + 1.5f * srcRect.width(); dstRect.fBottom = 1.5f * srcRect.height(); constraint = SkCanvas::kStrict_SrcRectConstraint; } for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { SkPaint paint; paint.setFilterQuality(kLow_SkFilterQuality); if (kIdentity_SkYUVColorSpace == cs) { // The identity color space needs post processing to appear correctly paint.setColorFilter(yuv_to_rgb_colorfilter()); } for (int opaque : { 0, 1 }) { dstRect.offsetTo(dstRect.fLeft, kLabelHeight); draw_col_label(canvas, dstRect.fLeft + cellWidth / 2, cs, opaque); canvas->drawBitmapRect(fOriginalBMs[opaque], origSrcRect, dstRect, nullptr, constraint); dstRect.offset(0.f, cellHeight + kPad); for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) { draw_row_label(canvas, dstRect.fTop, format); if (fUseTargetColorSpace && fImages[opaque][cs][format]) { // Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image // doesn't make a whole lot of sense. The colorSpace conversion will // operate on the YUV components rather than the RGB components. sk_sp csImage = fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace, direct); canvas->drawImageRect(csImage, srcRect, dstRect, &paint, constraint); } else { canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect, &paint, constraint); } dstRect.offset(0.f, cellHeight + kPad); } dstRect.offset(cellWidth + kPad, 0.f); } } } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1]; bool fUseTargetColorSpace; bool fUseDomain; bool fQuarterSize; sk_sp fTargetColorSpace; bool fGpuGeneratedImages = false; typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ false);) DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ true);) DEF_GM(return new WackyYUVFormatsGM(/* cs */ true, /* domain */ false, /* quarterSize */ false);) DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ true, /* quarterSize */ false);) class YUVMakeColorSpaceGM : public GpuGM { public: YUVMakeColorSpaceGM() { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { return SkString("yuv_make_color_space"); } SkISize onISize() override { int numCols = 4; // (transparent, opaque) x (untagged, tagged) int numRows = 5; // original, YUV, subset, makeNonTextureImage, readPixels return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad, numRows * (kTileWidthHeight + kPad) + kPad); } void createBitmaps() { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false); } fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } bool createImages(GrDirectContext* context) { for (bool opaque : { false, true }) { PlaneData planes; extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes); SkBitmap resultBMs[4]; create_YUV(planes, kAYUV_YUVFormat, resultBMs, opaque); auto& planarConfig = YUVAFormatPlanarConfig(kAYUV_YUVFormat); int numPlanes = planarConfig.numPlanes(); auto releaseContext = new YUVABackendReleaseContext(context); auto srgbReleaseContext = new YUVABackendReleaseContext(context); for (int i = 0; i < numPlanes; ++i) { GrBackendTexture tmp = create_yuva_texture(context, resultBMs[i], i, releaseContext); if (!tmp.isValid()) { YUVABackendReleaseContext::Unwind(context, releaseContext, false); YUVABackendReleaseContext::Unwind(context, srgbReleaseContext, false); return false; } releaseContext->set(i, tmp); tmp = create_yuva_texture(context, resultBMs[i], i, srgbReleaseContext); if (!tmp.isValid()) { YUVABackendReleaseContext::Unwind(context, releaseContext, false); YUVABackendReleaseContext::Unwind(context, srgbReleaseContext, false); return false; } srgbReleaseContext->set(i, tmp); } SkYUVAIndex yuvaIndices[4]; planarConfig.getYUVAIndices(releaseContext->beTextures(), numPlanes, false, yuvaIndices); fImages[opaque][0] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, releaseContext->beTextures(), yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, nullptr, YUVABackendReleaseContext::Release, releaseContext); fImages[opaque][1] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, srgbReleaseContext->beTextures(), yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, SkColorSpace::MakeSRGB(), YUVABackendReleaseContext::Release, srgbReleaseContext); } // Some backends (e.g., Vulkan) require all work be completed for backend textures before // they are deleted. Since we don't know when we'll next have access to a direct context, // flush all the work now. context->flush(); context->submit(true); return true; } DrawResult onGpuSetup(GrDirectContext* context, SkString* errorMsg) override { if (!context || context->abandoned()) { return DrawResult::kSkip; } this->createBitmaps(); if (!this->createImages(context)) { *errorMsg = "Failed to create YUV images"; return DrawResult::kFail; } return DrawResult::kOk; } void onGpuTeardown() override { fImages[0][0] = fImages[0][1] = fImages[1][0] = fImages[1][1] = nullptr; } DrawResult onDraw(GrRecordingContext* recording, GrRenderTargetContext*, SkCanvas* canvas, SkString* msg) override { SkASSERT(fImages[0][0] && fImages[0][1] && fImages[1][0] && fImages[1][1]); auto direct = GrAsDirectContext(recording); if (recording && !direct) { *msg = "YUV ColorSpace image creation requires a direct context."; return DrawResult::kSkip; } int x = kPad; for (int tagged : { 0, 1 }) { for (int opaque : { 0, 1 }) { int y = kPad; auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque]) ->makeColorSpace(fTargetColorSpace, nullptr); canvas->drawImage(raster, x, y); y += kTileWidthHeight + kPad; if (fImages[opaque][tagged]) { auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace, direct); SkASSERT(yuv); SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get())); canvas->drawImage(yuv, x, y); y += kTileWidthHeight + kPad; SkIRect bounds = SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2); auto subset = yuv->makeSubset(bounds, direct); SkASSERT(subset); canvas->drawImage(subset, x, y); y += kTileWidthHeight + kPad; auto nonTexture = yuv->makeNonTextureImage(); SkASSERT(nonTexture); canvas->drawImage(nonTexture, x, y); y += kTileWidthHeight + kPad; SkBitmap readBack; readBack.allocPixels(yuv->imageInfo()); SkAssertResult(yuv->readPixels(readBack.pixmap(), 0, 0)); canvas->drawBitmap(readBack, x, y); } x += kTileWidthHeight + kPad; } } return DrawResult::kOk; } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][2]; sk_sp fTargetColorSpace; typedef GM INHERITED; }; DEF_GM(return new YUVMakeColorSpaceGM();) } /////////////// #include "include/effects/SkColorMatrix.h" #include "src/core/SkAutoPixmapStorage.h" #include "tools/Resources.h" static void draw_into_alpha(const SkImage* img, sk_sp cf, const SkPixmap& dst) { auto canvas = SkCanvas::MakeRasterDirect(dst.info(), dst.writable_addr(), dst.rowBytes()); canvas->scale(1.0f * dst.width() / img->width(), 1.0f * dst.height() / img->height()); SkPaint paint; paint.setFilterQuality(kLow_SkFilterQuality); paint.setColorFilter(cf); paint.setBlendMode(SkBlendMode::kSrc); canvas->drawImage(img, 0, 0, &paint); } static void split_into_yuv(const SkImage* img, SkYUVColorSpace cs, const SkPixmap dst[3]) { float m[20]; SkColorMatrix_RGB2YUV(cs, m); memcpy(m + 15, m + 0, 5 * sizeof(float)); // copy Y into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[0]); memcpy(m + 15, m + 5, 5 * sizeof(float)); // copy U into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[1]); memcpy(m + 15, m + 10, 5 * sizeof(float)); // copy V into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[2]); } static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y, const SkImage* a, const SkImage* b) { auto sh = SkShaders::Blend(SkBlendMode::kDifference, a->makeShader(), b->makeShader()); SkPaint paint; paint.setShader(sh); canvas->save(); canvas->translate(x, y); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); SkColorMatrix cm; cm.setScale(64, 64, 64); paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm))); canvas->translate(0, a->height()); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); canvas->restore(); } // Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the // resulting (recombined) images (gpu only for now). // class YUVSplitterGM : public skiagm::GM { sk_sp fOrig; SkAutoPixmapStorage fStorage[3]; SkPixmap fPM[3]; public: YUVSplitterGM() {} protected: SkString onShortName() override { return SkString("yuv_splitter"); } SkISize onISize() override { return SkISize::Make(1280, 768); } void onOnceBeforeDraw() override { fOrig = GetResourceAsImage("images/mandrill_256.png"); SkImageInfo info = SkImageInfo::Make(fOrig->width(), fOrig->height(), kAlpha_8_SkColorType, kPremul_SkAlphaType); fStorage[0].alloc(info); if (0) { // if you want to scale U,V down by 1/2 info = info.makeWH(info.width()/2, info.height()/2); } fStorage[1].alloc(info); fStorage[2].alloc(info); for (int i = 0; i < 3; ++i) { fPM[i] = fStorage[i]; } } void onDraw(SkCanvas* canvas) override { SkYUVAIndex indices[4]; indices[SkYUVAIndex::kY_Index] = {0, SkColorChannel::kR}; indices[SkYUVAIndex::kU_Index] = {1, SkColorChannel::kR}; indices[SkYUVAIndex::kV_Index] = {2, SkColorChannel::kR}; indices[SkYUVAIndex::kA_Index] = {-1, SkColorChannel::kR}; canvas->translate(fOrig->width(), 0); canvas->save(); for (auto cs : {kRec709_SkYUVColorSpace, kRec601_SkYUVColorSpace, kJPEG_SkYUVColorSpace, kBT2020_SkYUVColorSpace}) { split_into_yuv(fOrig.get(), cs, fPM); auto img = SkImage::MakeFromYUVAPixmaps(canvas->getGrContext(), cs, fPM, indices, fPM[0].info().dimensions(), kTopLeft_GrSurfaceOrigin, false, false, nullptr); if (img) { canvas->drawImage(img, 0, 0, nullptr); draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get()); } canvas->translate(fOrig->width(), 0); } canvas->restore(); canvas->translate(-fOrig->width(), 0); canvas->drawImage(SkImage::MakeRasterCopy(fPM[0]), 0, 0, nullptr); canvas->drawImage(SkImage::MakeRasterCopy(fPM[1]), 0, fPM[0].height(), nullptr); canvas->drawImage(SkImage::MakeRasterCopy(fPM[2]), 0, fPM[0].height() + fPM[1].height(), nullptr); } private: typedef GM INHERITED; }; DEF_GM( return new YUVSplitterGM; )