/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkCanvas.h" #include "include/core/SkData.h" #include "include/core/SkPaint.h" #include "include/core/SkRRect.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkImageFilters.h" #include "include/effects/SkRuntimeEffect.h" #include "include/utils/SkRandom.h" #include "src/core/SkColorSpacePriv.h" #include "tools/Resources.h" enum RT_Flags { kAnimate_RTFlag = 0x1, kBench_RTFlag = 0x2, kColorFilter_RTFlag = 0x4, }; class RuntimeShaderGM : public skiagm::GM { public: RuntimeShaderGM(const char* name, SkISize size, const char* sksl, uint32_t flags = 0) : fName(name), fSize(size), fFlags(flags), fSkSL(sksl) {} void onOnceBeforeDraw() override { auto [effect, error] = (fFlags & kColorFilter_RTFlag) ? SkRuntimeEffect::MakeForColorFilter(fSkSL) : SkRuntimeEffect::MakeForShader(fSkSL); if (!effect) { SkDebugf("RuntimeShader error: %s\n", error.c_str()); } fEffect = std::move(effect); } bool runAsBench() const override { return SkToBool(fFlags & kBench_RTFlag); } SkString onShortName() override { return fName; } SkISize onISize() override { return fSize; } bool onAnimate(double nanos) override { fSecs = nanos / (1000 * 1000 * 1000); return SkToBool(fFlags & kAnimate_RTFlag); } protected: SkString fName; SkISize fSize; uint32_t fFlags; float fSecs = 0.0f; SkString fSkSL; sk_sp fEffect; }; class SimpleRT : public RuntimeShaderGM { public: SimpleRT() : RuntimeShaderGM("runtime_shader", {512, 256}, R"( uniform half4 gColor; half4 main(float2 p) { return half4(p*(1.0/255), gColor.b, 1); } )", kBench_RTFlag) {} void onDraw(SkCanvas* canvas) override { SkRuntimeShaderBuilder builder(fEffect); SkMatrix localM; localM.setRotate(90, 128, 128); builder.uniform("gColor") = SkColor4f{1, 0, 0, 1}; SkPaint p; p.setShader(builder.makeShader(&localM, true)); canvas->drawRect({0, 0, 256, 256}, p); } }; DEF_GM(return new SimpleRT;) static sk_sp make_shader(sk_sp img, SkISize size) { SkMatrix scale = SkMatrix::Scale(size.width() / (float)img->width(), size.height() / (float)img->height()); return img->makeShader(SkSamplingOptions(), scale); } static sk_sp make_threshold(SkISize size) { auto info = SkImageInfo::Make(size.width(), size.height(), kAlpha_8_SkColorType, kPremul_SkAlphaType); auto surf = SkSurface::MakeRaster(info); auto canvas = surf->getCanvas(); const SkScalar rad = 50; SkColor colors[] = {SK_ColorBLACK, 0}; SkPaint paint; paint.setAntiAlias(true); paint.setShader(SkGradientShader::MakeRadial({0,0}, rad, colors, nullptr, 2, SkTileMode::kClamp)); SkPaint layerPaint; const SkScalar sigma = 16.0f; layerPaint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr)); canvas->saveLayer(nullptr, &layerPaint); SkRandom rand; for (int i = 0; i < 25; ++i) { SkScalar x = rand.nextF() * size.width(); SkScalar y = rand.nextF() * size.height(); canvas->save(); canvas->translate(x, y); canvas->drawCircle(0, 0, rad, paint); canvas->restore(); } canvas->restore(); // apply the blur return surf->makeImageSnapshot()->makeShader(SkSamplingOptions()); } class ThresholdRT : public RuntimeShaderGM { public: ThresholdRT() : RuntimeShaderGM("threshold_rt", {256, 256}, R"( uniform shader before_map; uniform shader after_map; uniform shader threshold_map; uniform float cutoff; uniform float slope; float smooth_cutoff(float x) { x = x * slope + (0.5 - slope * cutoff); return clamp(x, 0, 1); } half4 main(float2 xy) { half4 before = before_map.eval(xy); half4 after = after_map.eval(xy); float m = smooth_cutoff(threshold_map.eval(xy).a); return mix(before, after, m); } )", kAnimate_RTFlag | kBench_RTFlag) {} sk_sp fBefore, fAfter, fThreshold; void onOnceBeforeDraw() override { const SkISize size = {256, 256}; fThreshold = make_threshold(size); fBefore = make_shader(GetResourceAsImage("images/mandrill_256.png"), size); fAfter = make_shader(GetResourceAsImage("images/dog.jpg"), size); this->RuntimeShaderGM::onOnceBeforeDraw(); } void onDraw(SkCanvas* canvas) override { SkRuntimeShaderBuilder builder(fEffect); builder.uniform("cutoff") = sin(fSecs) * 0.55f + 0.5f; builder.uniform("slope") = 10.0f; builder.child("before_map") = fBefore; builder.child("after_map") = fAfter; builder.child("threshold_map") = fThreshold; SkPaint paint; paint.setShader(builder.makeShader(nullptr, true)); canvas->drawRect({0, 0, 256, 256}, paint); auto draw = [&](SkScalar x, SkScalar y, sk_sp shader) { paint.setShader(shader); canvas->save(); canvas->translate(x, y); canvas->drawRect({0, 0, 256, 256}, paint); canvas->restore(); }; draw(256, 0, fThreshold); draw( 0, 256, fBefore); draw(256, 256, fAfter); } }; DEF_GM(return new ThresholdRT;) class SpiralRT : public RuntimeShaderGM { public: SpiralRT() : RuntimeShaderGM("spiral_rt", {512, 512}, R"( uniform float rad_scale; uniform float2 in_center; layout(color) uniform float4 in_colors0; layout(color) uniform float4 in_colors1; half4 main(float2 p) { float2 pp = p - in_center; float radius = length(pp); radius = sqrt(radius); float angle = atan(pp.y / pp.x); float t = (angle + 3.1415926/2) / (3.1415926); t += radius * rad_scale; t = fract(t); return in_colors0 * (1-t) + in_colors1 * t; } )", kAnimate_RTFlag | kBench_RTFlag) {} void onDraw(SkCanvas* canvas) override { SkRuntimeShaderBuilder builder(fEffect); builder.uniform("rad_scale") = std::sin(fSecs * 0.5f + 2.0f) / 5; builder.uniform("in_center") = SkV2{256, 256}; builder.uniform("in_colors0") = SkColors::kRed; builder.uniform("in_colors1") = SkColors::kGreen; SkPaint paint; paint.setShader(builder.makeShader(nullptr, true)); canvas->drawRect({0, 0, 512, 512}, paint); } }; DEF_GM(return new SpiralRT;) // Test case for sampling with both unmodified input coordinates, and explicit coordinates. // The first version of skbug.com/11869 suffered a bug where all samples of a child were treated // as pass-through if *at least one* used the unmodified coordinates. This was detected & tracked // in b/181092919. This GM is similar, and demonstrates the bug before the fix was applied. class UnsharpRT : public RuntimeShaderGM { public: UnsharpRT() : RuntimeShaderGM("unsharp_rt", {512, 256}, R"( uniform shader child; half4 main(float2 xy) { half4 c = child.eval(xy) * 5; c -= child.eval(xy + float2( 1, 0)); c -= child.eval(xy + float2(-1, 0)); c -= child.eval(xy + float2( 0, 1)); c -= child.eval(xy + float2( 0, -1)); return c; } )") {} sk_sp fMandrill; void onOnceBeforeDraw() override { fMandrill = GetResourceAsImage("images/mandrill_256.png"); this->RuntimeShaderGM::onOnceBeforeDraw(); } void onDraw(SkCanvas* canvas) override { // First we draw the unmodified image canvas->drawImage(fMandrill, 0, 0); // Now draw the image with our unsharp mask applied SkRuntimeShaderBuilder builder(fEffect); const SkSamplingOptions sampling(SkFilterMode::kNearest); builder.child("child") = fMandrill->makeShader(sampling); SkPaint paint; paint.setShader(builder.makeShader(nullptr, true)); canvas->translate(256, 0); canvas->drawRect({ 0, 0, 256, 256 }, paint); } }; DEF_GM(return new UnsharpRT;) class ColorCubeRT : public RuntimeShaderGM { public: ColorCubeRT() : RuntimeShaderGM("color_cube_rt", {512, 512}, R"( uniform shader child; uniform shader color_cube; uniform float rg_scale; uniform float rg_bias; uniform float b_scale; uniform float inv_size; half4 main(float2 xy) { float4 c = unpremul(child.eval(xy)); // Map to cube coords: float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); // Compute slice coordinate float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); // Two bilinear fetches, plus a manual lerp for the third axis: half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), fract(cubeCoords.b)); // Premul again color.rgb *= color.a; return color; } )") {} sk_sp fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; void onOnceBeforeDraw() override { fMandrill = GetResourceAsImage("images/mandrill_256.png"); fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); fIdentityCube = GetResourceAsImage("images/lut_identity.png"); fSepiaCube = GetResourceAsImage("images/lut_sepia.png"); this->RuntimeShaderGM::onOnceBeforeDraw(); } void onDraw(SkCanvas* canvas) override { SkRuntimeShaderBuilder builder(fEffect); // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: canvas->drawImage(fMandrill, 0, 0); canvas->drawImage(fMandrillSepia, 0, 256); // LUT dimensions should be (kSize^2, kSize) constexpr float kSize = 16.0f; const SkSamplingOptions sampling(SkFilterMode::kLinear); builder.uniform("rg_scale") = (kSize - 1) / kSize; builder.uniform("rg_bias") = 0.5f / kSize; builder.uniform("b_scale") = kSize - 1; builder.uniform("inv_size") = 1.0f / kSize; builder.child("child") = fMandrill->makeShader(sampling); SkPaint paint; // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); // Now draw the image with an identity color cube - it should look like the original builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize); paint.setShader(builder.makeShader(nullptr, true)); canvas->translate(256, 0); canvas->drawRect({ 0, 0, 256, 256 }, paint); // ... and with a sepia-tone color cube. This should match the sepia-toned image. builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize); paint.setShader(builder.makeShader(nullptr, true)); canvas->translate(0, 256); canvas->drawRect({ 0, 0, 256, 256 }, paint); } }; DEF_GM(return new ColorCubeRT;) // Same as above, but demonstrating how to implement this as a runtime color filter (that samples // a shader child for the LUT). class ColorCubeColorFilterRT : public RuntimeShaderGM { public: ColorCubeColorFilterRT() : RuntimeShaderGM("color_cube_cf_rt", {512, 512}, R"( uniform shader color_cube; uniform float rg_scale; uniform float rg_bias; uniform float b_scale; uniform float inv_size; half4 main(half4 inColor) { float4 c = unpremul(inColor); // Map to cube coords: float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); // Compute slice coordinate float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); // Two bilinear fetches, plus a manual lerp for the third axis: half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), fract(cubeCoords.b)); // Premul again color.rgb *= color.a; return color; } )", kColorFilter_RTFlag) {} sk_sp fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; void onOnceBeforeDraw() override { fMandrill = GetResourceAsImage("images/mandrill_256.png"); fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); fIdentityCube = GetResourceAsImage("images/lut_identity.png"); fSepiaCube = GetResourceAsImage("images/lut_sepia.png"); this->RuntimeShaderGM::onOnceBeforeDraw(); } void onDraw(SkCanvas* canvas) override { // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: canvas->drawImage(fMandrill, 0, 0); canvas->drawImage(fMandrillSepia, 0, 256); // LUT dimensions should be (kSize^2, kSize) constexpr float kSize = 16.0f; const SkSamplingOptions sampling(SkFilterMode::kLinear); float uniforms[] = { (kSize - 1) / kSize, // rg_scale 0.5f / kSize, // rg_bias kSize - 1, // b_scale 1.0f / kSize, // inv_size }; SkPaint paint; // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); // Now draw the image with an identity color cube - it should look like the original SkRuntimeEffect::ChildPtr children[] = {fIdentityCube->makeShader(sampling, normalize)}; paint.setColorFilter(fEffect->makeColorFilter( SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children))); canvas->drawImage(fMandrill, 256, 0, sampling, &paint); // ... and with a sepia-tone color cube. This should match the sepia-toned image. children[0] = fSepiaCube->makeShader(sampling, normalize); paint.setColorFilter(fEffect->makeColorFilter( SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children))); canvas->drawImage(fMandrill, 256, 256, sampling, &paint); } }; DEF_GM(return new ColorCubeColorFilterRT;) class DefaultColorRT : public RuntimeShaderGM { public: DefaultColorRT() : RuntimeShaderGM("default_color_rt", {512, 256}, R"( uniform shader child; half4 main(float2 xy) { return child.eval(xy); } )") {} sk_sp fMandrill; void onOnceBeforeDraw() override { fMandrill = GetResourceAsImage("images/mandrill_256.png"); this->RuntimeShaderGM::onOnceBeforeDraw(); } void onDraw(SkCanvas* canvas) override { SkRuntimeShaderBuilder builder(fEffect); // First, we leave the child as null, so sampling it returns the default (paint) color SkPaint paint; paint.setColor4f({ 0.25f, 0.75f, 0.75f, 1.0f }); paint.setShader(builder.makeShader(nullptr, false)); canvas->drawRect({ 0, 0, 256, 256 }, paint); // Now we bind an image shader as the child. This (by convention) scales by the paint alpha builder.child("child") = fMandrill->makeShader(SkSamplingOptions()); paint.setColor4f({ 1.0f, 1.0f, 1.0f, 0.5f }); paint.setShader(builder.makeShader(nullptr, false)); canvas->translate(256, 0); canvas->drawRect({ 0, 0, 256, 256 }, paint); } }; DEF_GM(return new DefaultColorRT;) // Emits coverage for a rounded rectangle whose corners are superellipses defined by the boundary: // // x^n + y^n == 1 // // Where x and y are normalized, clamped coordinates ranging from 0..1 inside the nearest corner's // bounding box. // // See: https://en.wikipedia.org/wiki/Superellipse class ClipSuperRRect : public RuntimeShaderGM { public: ClipSuperRRect(const char* name, float power) : RuntimeShaderGM(name, {500, 500}, R"( uniform float power_minus1; uniform float2 stretch_factor; uniform float2x2 derivatives; half4 main(float2 xy) { xy = max(abs(xy) + stretch_factor, 0); float2 exp_minus1 = pow(xy, power_minus1.xx); // If power == 3.5: xy * xy * sqrt(xy) float f = dot(exp_minus1, xy) - 1; // f = x^n + y^n - 1 float2 grad = exp_minus1 * derivatives; float fwidth = abs(grad.x) + abs(grad.y) + 1e-12; // 1e-12 to avoid a divide by zero. return half4(saturate(.5 - f/fwidth)); // Approx coverage by riding the gradient to f=0. } )"), fPower(power) {} void drawSuperRRect(SkCanvas* canvas, const SkRect& superRRect, float radX, float radY, SkColor color) { SkPaint paint; paint.setColor(color); if (fPower == 2) { // Draw a normal round rect for the sake of testing. SkRRect rrect = SkRRect::MakeRectXY(superRRect, radX, radY); paint.setAntiAlias(true); canvas->drawRRect(rrect, paint); return; } SkRuntimeShaderBuilder builder(fEffect); builder.uniform("power_minus1") = fPower - 1; // Size the corners such that the "apex" of our "super" rounded corner is in the same // location that the apex of a circular rounded corner would be with the given radii. We // define the apex as the point on the rounded corner that is 45 degrees between the // horizontal and vertical edges. float scale = (1 - SK_ScalarRoot2Over2) / (1 - exp2f(-1/fPower)); float cornerWidth = radX * scale; float cornerHeight = radY * scale; cornerWidth = std::min(cornerWidth, superRRect.width() * .5f); cornerHeight = std::min(cornerHeight, superRRect.height() * .5f); // The stretch factor controls how long the flat edge should be between rounded corners. builder.uniform("stretch_factor") = SkV2{1 - superRRect.width()*.5f / cornerWidth, 1 - superRRect.height()*.5f / cornerHeight}; // Calculate a 2x2 "derivatives" matrix that the shader will use to find the gradient. // // f = s^n + t^n - 1 [s,t are "super" rounded corner coords in normalized 0..1 space] // // gradient = [df/dx df/dy] = [ns^(n-1) nt^(n-1)] * |ds/dx ds/dy| // |dt/dx dt/dy| // // = [s^(n-1) t^(n-1)] * |n 0| * |ds/dx ds/dy| // |0 n| |dt/dx dt/dy| // // = [s^(n-1) t^(n-1)] * |2n/cornerWidth 0| * mat2x2(canvasMatrix)^-1 // |0 2n/cornerHeight| // // = [s^(n-1) t^(n-1)] * "derivatives" // const SkMatrix& M = canvas->getTotalMatrix(); float a=M.getScaleX(), b=M.getSkewX(), c=M.getSkewY(), d=M.getScaleY(); float determinant = a*d - b*c; float dx = fPower / (cornerWidth * determinant); float dy = fPower / (cornerHeight * determinant); builder.uniform("derivatives") = SkV4{d*dx, -c*dy, -b*dx, a*dy}; // This matrix will be inverted by the effect system, giving a matrix that converts local // coordinates to (almost) coner coordinates. To get the rest of the way to the nearest // corner's space, the shader will have to take the absolute value, add the stretch_factor, // then clamp above zero. SkMatrix cornerToLocal; cornerToLocal.setScaleTranslate(cornerWidth, cornerHeight, superRRect.centerX(), superRRect.centerY()); canvas->clipShader(builder.makeShader(&cornerToLocal, false)); // Bloat the outer edges of the rect we will draw so it contains all the antialiased pixels. // Bloat by a full pixel instead of half in case Skia is in a mode that draws this rect with // unexpected AA of its own. float inverseDet = 1 / fabsf(determinant); float bloatX = (fabsf(d) + fabsf(c)) * inverseDet; float bloatY = (fabsf(b) + fabsf(a)) * inverseDet; canvas->drawRect(superRRect.makeOutset(bloatX, bloatY), paint); } void onDraw(SkCanvas* canvas) override { SkRandom rand(2); canvas->save(); canvas->translate(canvas->imageInfo().width() / 2.f, canvas->imageInfo().height() / 2.f); canvas->save(); canvas->rotate(21); this->drawSuperRRect(canvas, SkRect::MakeXYWH(-5, 25, 175, 100), 50, 30, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(94); this->drawSuperRRect(canvas, SkRect::MakeXYWH(95, 75, 125, 100), 30, 30, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(132); this->drawSuperRRect(canvas, SkRect::MakeXYWH(0, 75, 150, 100), 40, 30, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(282); this->drawSuperRRect(canvas, SkRect::MakeXYWH(15, -20, 100, 100), 20, 20, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(0); this->drawSuperRRect(canvas, SkRect::MakeXYWH(140, -50, 90, 110), 25, 25, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(-35); this->drawSuperRRect(canvas, SkRect::MakeXYWH(160, -60, 60, 90), 18, 18, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(65); this->drawSuperRRect(canvas, SkRect::MakeXYWH(220, -120, 60, 90), 18, 18, rand.nextU() | 0xff808080); canvas->restore(); canvas->save(); canvas->rotate(265); this->drawSuperRRect(canvas, SkRect::MakeXYWH(150, -129, 80, 160), 24, 39, rand.nextU() | 0xff808080); canvas->restore(); canvas->restore(); } private: const float fPower; }; DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow2", 2);) // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3", 3);) DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3.5", 3.5);) // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4", 4);) // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4.5", 4.5);) // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow5", 5);) class LinearGradientRT : public RuntimeShaderGM { public: LinearGradientRT() : RuntimeShaderGM("linear_gradient_rt", {256 + 10, 128 + 15}, R"( layout(color) uniform vec4 in_colors0; layout(color) uniform vec4 in_colors1; vec4 main(vec2 p) { float t = p.x / 256; if (p.y < 32) { return mix(in_colors0, in_colors1, t); } else { vec3 linColor0 = toLinearSrgb(in_colors0.rgb); vec3 linColor1 = toLinearSrgb(in_colors1.rgb); vec3 linColor = mix(linColor0, linColor1, t); return fromLinearSrgb(linColor).rgb1; } } )") {} void onDraw(SkCanvas* canvas) override { // Colors chosen to use values other than 0 and 1 - so that it's obvious if the conversion // intrinsics are doing anything. (Most transfer functions map 0 -> 0 and 1 -> 1). SkRuntimeShaderBuilder builder(fEffect); builder.uniform("in_colors0") = SkColor4f{0.75f, 0.25f, 0.0f, 1.0f}; builder.uniform("in_colors1") = SkColor4f{0.0f, 0.75f, 0.25f, 1.0f}; SkPaint paint; paint.setShader(builder.makeShader(nullptr, true)); canvas->save(); canvas->clear(SK_ColorWHITE); canvas->translate(5, 5); // We draw everything twice. First to a surface with no color management, where the // intrinsics should do nothing (eg, the top bar should look the same in the top and bottom // halves). Then to an sRGB surface, where they should produce linearly interpolated // gradients (the bottom half of the second bar should be brighter than the top half). for (auto cs : {static_cast(nullptr), sk_srgb_singleton()}) { SkImageInfo info = SkImageInfo::Make( 256, 64, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(cs)); auto surface = canvas->makeSurface(info); if (!surface) { surface = SkSurface::MakeRaster(info); } surface->getCanvas()->drawRect({0, 0, 256, 64}, paint); canvas->drawImage(surface->makeImageSnapshot(), 0, 0); canvas->translate(0, 64 + 5); } canvas->restore(); } }; DEF_GM(return new LinearGradientRT;) DEF_SIMPLE_GM(child_sampling_rt, canvas, 256,256) { static constexpr char scale[] = "uniform shader child;" "half4 main(float2 xy) {" " return child.eval(xy*0.1);" "}"; SkPaint p; p.setColor(SK_ColorRED); p.setAntiAlias(true); p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(1); auto surf = SkSurface::MakeRasterN32Premul(100,100); surf->getCanvas()->drawLine(0, 0, 100, 100, p); auto shader = surf->makeImageSnapshot()->makeShader(SkSamplingOptions(SkFilterMode::kLinear)); SkRuntimeShaderBuilder builder(SkRuntimeEffect::MakeForShader(SkString(scale)).effect); builder.child("child") = shader; p.setShader(builder.makeShader(nullptr, false)); canvas->drawPaint(p); } static sk_sp normal_map_shader() { // Produces a hemispherical normal: static const char* kSrc = R"( half4 main(vec2 p) { p = (p / 256) * 2 - 1; float p2 = dot(p, p); vec3 v = (p2 > 1) ? vec3(0, 0, 1) : vec3(p, sqrt(1 - p2)); return (v * 0.5 + 0.5).xyz1; } )"; auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; return effect->makeShader(nullptr, {}, nullptr, true); } static sk_sp normal_map_image() { // Above, baked into an image: auto info = SkImageInfo::Make(256, 256, kN32_SkColorType, kPremul_SkAlphaType); auto surface = SkSurface::MakeRaster(info); SkPaint p; p.setShader(normal_map_shader()); surface->getCanvas()->drawPaint(p); return surface->makeImageSnapshot(); } static sk_sp normal_map_image_shader() { return normal_map_image()->makeShader(SkSamplingOptions{}); } static sk_sp normal_map_raw_image_shader() { return normal_map_image()->makeRawShader(SkSamplingOptions{}); } static sk_sp normal_map_unpremul_image() { auto image = normal_map_image(); SkPixmap pm; SkAssertResult(image->peekPixels(&pm)); SkBitmap bmp; bmp.allocPixels(image->imageInfo().makeAlphaType(kUnpremul_SkAlphaType)); // Copy all pixels over, but set alpha to 0 for (int y = 0; y < pm.height(); y++) { for (int x = 0; x < pm.width(); x++) { *bmp.getAddr32(x, y) = *pm.addr32(x, y) & 0x00FFFFFF; } } return bmp.asImage(); } static sk_sp normal_map_unpremul_image_shader() { return normal_map_unpremul_image()->makeShader(SkSamplingOptions{}); } static sk_sp normal_map_raw_unpremul_image_shader() { return normal_map_unpremul_image()->makeRawShader(SkSamplingOptions{}); } static sk_sp lit_shader(sk_sp normals) { // Simple N-dot-L against a fixed, directional light: static const char* kSrc = R"( uniform shader normals; half4 main(vec2 p) { vec3 n = normalize(normals.eval(p).xyz * 2 - 1); vec3 l = normalize(vec3(1, -1, 1)); return saturate(dot(n, l)).xxx1; } )"; auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; return effect->makeShader(nullptr, &normals, 1, nullptr, true); } static sk_sp lit_shader_linear(sk_sp normals) { // Simple N-dot-L against a fixed, directional light, done in linear space: static const char* kSrc = R"( uniform shader normals; half4 main(vec2 p) { vec3 n = normalize(normals.eval(p).xyz * 2 - 1); vec3 l = normalize(vec3(1, -1, 1)); return fromLinearSrgb(saturate(dot(n, l)).xxx).xxx1; } )"; auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; return effect->makeShader(nullptr, &normals, 1, nullptr, true); } DEF_SIMPLE_GM(paint_alpha_normals_rt, canvas, 512,512) { // Various draws, with non-opaque paint alpha. This demonstrates several issues around how // paint alpha is applied differently on CPU (globally, after all shaders) and GPU (per shader, // inconsistently). See: skbug.com/11942 // // When this works, it will be a demo of applying paint alpha to fade out a complex effect. auto draw_shader = [=](int x, int y, sk_sp shader) { SkPaint p; p.setAlpha(164); p.setShader(shader); canvas->save(); canvas->translate(x, y); canvas->clipRect({0, 0, 256, 256}); canvas->drawPaint(p); canvas->restore(); }; draw_shader(0, 0, normal_map_shader()); draw_shader(0, 256, normal_map_image_shader()); draw_shader(256, 0, lit_shader(normal_map_shader())); draw_shader(256, 256, lit_shader(normal_map_image_shader())); } DEF_SIMPLE_GM(raw_image_shader_normals_rt, canvas, 768, 512) { // Demonstrates the utility of SkImage::makeRawShader, for non-color child shaders. // First, make an offscreen surface, so we can control the destination color space: auto surfInfo = SkImageInfo::Make(512, 512, kN32_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()->makeColorSpin()); auto surface = canvas->makeSurface(surfInfo); if (!surface) { surface = SkSurface::MakeRaster(surfInfo); } auto draw_shader = [](int x, int y, sk_sp shader, SkCanvas* canvas) { SkPaint p; p.setShader(shader); canvas->save(); canvas->translate(x, y); canvas->clipRect({0, 0, 256, 256}); canvas->drawPaint(p); canvas->restore(); }; sk_sp colorNormals = normal_map_image_shader(), rawNormals = normal_map_raw_image_shader(); // Draw our normal map as colors (will be color-rotated), and raw (untransformed) draw_shader(0, 0, colorNormals, surface->getCanvas()); draw_shader(0, 256, rawNormals, surface->getCanvas()); // Now draw our lighting shader using the normal and raw versions of the normals as children. // The top image will have the normals rotated (incorrectly), so the lighting is very dark. draw_shader(256, 0, lit_shader(colorNormals), surface->getCanvas()); draw_shader(256, 256, lit_shader(rawNormals), surface->getCanvas()); // Now draw the offscreen surface back to our original canvas. If we do this naively, the image // will be un-transformed back to the canvas' color space. That will have the effect of undoing // the color spin on the upper-left, and APPLYING a color-spin on the bottom left. To preserve // the intent of this GM (and make it draw consistently whether or not the original surface has // a color space attached), we reinterpret the offscreen image as being in sRGB: canvas->drawImage( surface->makeImageSnapshot()->reinterpretColorSpace(SkColorSpace::MakeSRGB()), 0, 0); // Finally, to demonstrate that raw unpremul image shaders don't premul, draw lighting two more // times, with an unpremul normal map (containing ZERO in the alpha channel). THe top will // premultiply the normals, resulting in totally dark lighting. The bottom will retain the RGB // encoded normals, even with zero alpha: draw_shader(512, 0, lit_shader(normal_map_unpremul_image_shader()), canvas); draw_shader(512, 256, lit_shader(normal_map_raw_unpremul_image_shader()), canvas); } DEF_SIMPLE_GM(lit_shader_linear_rt, canvas, 512, 256) { // First, make an offscreen surface, so we can control the destination color space: auto surfInfo = SkImageInfo::Make(512, 256, kN32_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); auto surface = canvas->makeSurface(surfInfo); if (!surface) { surface = SkSurface::MakeRaster(surfInfo); } auto draw_shader = [](int x, int y, sk_sp shader, SkCanvas* canvas) { SkPaint p; p.setShader(shader); canvas->save(); canvas->translate(x, y); canvas->clipRect({0, 0, 256, 256}); canvas->drawPaint(p); canvas->restore(); }; // We draw two lit spheres - one does math in the working space (so gamma-encoded). The second // works in linear space, then converts to sRGB. This produces (more accurate) sharp falloff: draw_shader(0, 0, lit_shader(normal_map_shader()), surface->getCanvas()); draw_shader(256, 0, lit_shader_linear(normal_map_shader()), surface->getCanvas()); // Now draw the offscreen surface back to our original canvas: canvas->drawImage(surface->makeImageSnapshot(), 0, 0); }