/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathRef_DEFINED #define SkPathRef_DEFINED #include "SkAtomics.h" #include "SkMatrix.h" #include "SkMutex.h" #include "SkPoint.h" #include "SkRRect.h" #include "SkRect.h" #include "SkRefCnt.h" #include "SkTDArray.h" #include "SkTemplates.h" #include "SkTo.h" #include class SkRBuffer; class SkWBuffer; /** * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's * constructor a pointer to a sk_sp, which may be updated to point to a new SkPathRef * after the editor's constructor returns. * * The points and verbs are stored in a single allocation. The points are at the begining of the * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points * and verbs both grow into the middle of the allocation until the meet. To access verb i in the * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first * logical verb or the last verb in memory). */ class SK_API SkPathRef final : public SkNVRefCnt { public: class Editor { public: Editor(sk_sp* pathRef, int incReserveVerbs = 0, int incReservePoints = 0); ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) } /** * Returns the array of points. */ SkPoint* points() { return fPathRef->getPoints(); } const SkPoint* points() const { return fPathRef->points(); } /** * Gets the ith point. Shortcut for this->points() + i */ SkPoint* atPoint(int i) { SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); return this->points() + i; } const SkPoint* atPoint(int i) const { SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); return this->points() + i; } /** * Adds the verb and allocates space for the number of points indicated by the verb. The * return value is a pointer to where the points for the verb should be written. * 'weight' is only used if 'verb' is kConic_Verb */ SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) { SkDEBUGCODE(fPathRef->validate();) return fPathRef->growForVerb(verb, weight); } /** * Allocates space for multiple instances of a particular verb and the * requisite points & weights. * The return pointer points at the first new point (indexed normally []). * If 'verb' is kConic_Verb, 'weights' will return a pointer to the * space for the conic weights (indexed normally). */ SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights = nullptr) { return fPathRef->growForRepeatedVerb(verb, numVbs, weights); } /** * Resets the path ref to a new verb and point count. The new verbs and points are * uninitialized. */ void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) { fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount); } /** * Gets the path ref that is wrapped in the Editor. */ SkPathRef* pathRef() { return fPathRef; } void setIsOval(bool isOval, bool isCCW, unsigned start) { fPathRef->setIsOval(isOval, isCCW, start); } void setIsRRect(bool isRRect, bool isCCW, unsigned start) { fPathRef->setIsRRect(isRRect, isCCW, start); } void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); } private: SkPathRef* fPathRef; }; class SK_API Iter { public: Iter(); Iter(const SkPathRef&); void setPathRef(const SkPathRef&); /** Return the next verb in this iteration of the path. When all segments have been visited, return kDone_Verb. If any point in the path is non-finite, return kDone_Verb immediately. @param pts The points representing the current verb and/or segment This must not be NULL. @return The verb for the current segment */ uint8_t next(SkPoint pts[4]); uint8_t peek() const; SkScalar conicWeight() const { return *fConicWeights; } private: const SkPoint* fPts; const uint8_t* fVerbs; const uint8_t* fVerbStop; const SkScalar* fConicWeights; }; public: /** * Gets a path ref with no verbs or points. */ static SkPathRef* CreateEmpty(); /** * Returns true if all of the points in this path are finite, meaning there * are no infinities and no NaNs. */ bool isFinite() const { if (fBoundsIsDirty) { this->computeBounds(); } return SkToBool(fIsFinite); } /** * Returns a mask, where each bit corresponding to a SegmentMask is * set if the path contains 1 or more segments of that type. * Returns 0 for an empty path (no segments). */ uint32_t getSegmentMasks() const { return fSegmentMask; } /** Returns true if the path is an oval. * * @param rect returns the bounding rect of this oval. It's a circle * if the height and width are the same. * @param isCCW is the oval CCW (or CW if false). * @param start indicates where the contour starts on the oval (see * SkPath::addOval for intepretation of the index). * * @return true if this path is an oval. * Tracking whether a path is an oval is considered an * optimization for performance and so some paths that are in * fact ovals can report false. */ bool isOval(SkRect* rect, bool* isCCW, unsigned* start) const { if (fIsOval) { if (rect) { *rect = this->getBounds(); } if (isCCW) { *isCCW = SkToBool(fRRectOrOvalIsCCW); } if (start) { *start = fRRectOrOvalStartIdx; } } return SkToBool(fIsOval); } bool isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const { if (fIsRRect) { if (rrect) { *rrect = this->getRRect(); } if (isCCW) { *isCCW = SkToBool(fRRectOrOvalIsCCW); } if (start) { *start = fRRectOrOvalStartIdx; } } return SkToBool(fIsRRect); } bool hasComputedBounds() const { return !fBoundsIsDirty; } /** Returns the bounds of the path's points. If the path contains 0 or 1 points, the bounds is set to (0,0,0,0), and isEmpty() will return true. Note: this bounds may be larger than the actual shape, since curves do not extend as far as their control points. */ const SkRect& getBounds() const { if (fBoundsIsDirty) { this->computeBounds(); } return fBounds; } SkRRect getRRect() const; /** * Transforms a path ref by a matrix, allocating a new one only if necessary. */ static void CreateTransformedCopy(sk_sp* dst, const SkPathRef& src, const SkMatrix& matrix); static SkPathRef* CreateFromBuffer(SkRBuffer* buffer); /** * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be * repopulated with approximately the same number of verbs and points. A new path ref is created * only if necessary. */ static void Rewind(sk_sp* pathRef); ~SkPathRef(); int countPoints() const { return fPointCnt; } int countVerbs() const { return fVerbCnt; } int countWeights() const { return fConicWeights.count(); } /** * Returns a pointer one beyond the first logical verb (last verb in memory order). */ const uint8_t* verbs() const { return fVerbs; } /** * Returns a const pointer to the first verb in memory (which is the last logical verb). */ const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; } /** * Returns a const pointer to the first point. */ const SkPoint* points() const { return fPoints; } /** * Shortcut for this->points() + this->countPoints() */ const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); } const SkScalar* conicWeights() const { return fConicWeights.begin(); } const SkScalar* conicWeightsEnd() const { return fConicWeights.end(); } /** * Convenience methods for getting to a verb or point by index. */ uint8_t atVerb(int index) const { SkASSERT((unsigned) index < (unsigned) fVerbCnt); return this->verbs()[~index]; } const SkPoint& atPoint(int index) const { SkASSERT((unsigned) index < (unsigned) fPointCnt); return this->points()[index]; } bool operator== (const SkPathRef& ref) const; /** * Writes the path points and verbs to a buffer. */ void writeToBuffer(SkWBuffer* buffer) const; /** * Gets the number of bytes that would be written in writeBuffer() */ uint32_t writeSize() const; void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const; /** * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the * same ID then they have the same verbs and points. However, two path refs may have the same * contents but different genIDs. */ uint32_t genID() const; struct GenIDChangeListener : SkRefCnt { virtual ~GenIDChangeListener() {} virtual void onChange() = 0; }; void addGenIDChangeListener(sk_sp); // Threadsafe. bool isValid() const; SkDEBUGCODE(void validate() const { SkASSERT(this->isValid()); } ) private: enum SerializationOffsets { kLegacyRRectOrOvalStartIdx_SerializationShift = 28, // requires 3 bits, ignored. kLegacyRRectOrOvalIsCCW_SerializationShift = 27, // requires 1 bit, ignored. kLegacyIsRRect_SerializationShift = 26, // requires 1 bit, ignored. kIsFinite_SerializationShift = 25, // requires 1 bit kLegacyIsOval_SerializationShift = 24, // requires 1 bit, ignored. kSegmentMask_SerializationShift = 0 // requires 4 bits (deprecated) }; SkPathRef() { fBoundsIsDirty = true; // this also invalidates fIsFinite fPointCnt = 0; fVerbCnt = 0; fVerbs = nullptr; fPoints = nullptr; fFreeSpace = 0; fGenerationID = kEmptyGenID; fSegmentMask = 0; fIsOval = false; fIsRRect = false; // The next two values don't matter unless fIsOval or fIsRRect are true. fRRectOrOvalIsCCW = false; fRRectOrOvalStartIdx = 0xAC; SkDEBUGCODE(fEditorsAttached = 0;) SkDEBUGCODE(this->validate();) } void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints); // Doesn't read fSegmentMask, but (re)computes it from the verbs array unsigned computeSegmentMask() const; // Return true if the computed bounds are finite. static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) { return bounds->setBoundsCheck(ref.points(), ref.countPoints()); } // called, if dirty, by getBounds() void computeBounds() const { SkDEBUGCODE(this->validate();) // TODO(mtklein): remove fBoundsIsDirty and fIsFinite, // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite. SkASSERT(fBoundsIsDirty); fIsFinite = ComputePtBounds(&fBounds, *this); fBoundsIsDirty = false; } void setBounds(const SkRect& rect) { SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom); fBounds = rect; fBoundsIsDirty = false; fIsFinite = fBounds.isFinite(); } /** Makes additional room but does not change the counts or change the genID */ void incReserve(int additionalVerbs, int additionalPoints) { SkDEBUGCODE(this->validate();) size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint); this->makeSpace(space); SkDEBUGCODE(this->validate();) } /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also * allocates space for reserveVerb additional verbs and reservePoints additional points.*/ void resetToSize(int verbCount, int pointCount, int conicCount, int reserveVerbs = 0, int reservePoints = 0) { SkDEBUGCODE(this->validate();) fBoundsIsDirty = true; // this also invalidates fIsFinite fGenerationID = 0; fSegmentMask = 0; fIsOval = false; fIsRRect = false; size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount; size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints; size_t minSize = newSize + newReserve; ptrdiff_t sizeDelta = this->currSize() - minSize; if (sizeDelta < 0 || static_cast(sizeDelta) >= 3 * minSize) { sk_free(fPoints); fPoints = nullptr; fVerbs = nullptr; fFreeSpace = 0; fVerbCnt = 0; fPointCnt = 0; this->makeSpace(minSize, true); fVerbCnt = verbCount; fPointCnt = pointCount; fFreeSpace -= newSize; } else { fPointCnt = pointCount; fVerbCnt = verbCount; fFreeSpace = this->currSize() - minSize; } fConicWeights.setCount(conicCount); SkDEBUGCODE(this->validate();) } /** * Increases the verb count by numVbs and point count by the required amount. * The new points are uninitialized. All the new verbs are set to the specified * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the * uninitialized conic weights. */ SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights); /** * Increases the verb count 1, records the new verb, and creates room for the requisite number * of additional points. A pointer to the first point is returned. Any new points are * uninitialized. */ SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight); /** * Ensures that the free space available in the path ref is >= size. The verb and point counts * are not changed. May allocate extra capacity, unless |exact| is true. */ void makeSpace(size_t size, bool exact = false) { SkDEBUGCODE(this->validate();) if (size <= fFreeSpace) { return; } size_t growSize = size - fFreeSpace; size_t oldSize = this->currSize(); if (!exact) { // round to next multiple of 8 bytes growSize = (growSize + 7) & ~static_cast(7); // we always at least double the allocation if (growSize < oldSize) { growSize = oldSize; } if (growSize < kMinSize) { growSize = kMinSize; } } constexpr size_t maxSize = std::numeric_limits::max(); size_t newSize; if (growSize <= maxSize - oldSize) { newSize = oldSize + growSize; } else { SK_ABORT("Path too big."); } // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO: // encapsulate this. fPoints = reinterpret_cast(sk_realloc_throw(fPoints, newSize)); size_t oldVerbSize = fVerbCnt * sizeof(uint8_t); void* newVerbsDst = SkTAddOffset(fPoints, newSize - oldVerbSize); void* oldVerbsSrc = SkTAddOffset(fPoints, oldSize - oldVerbSize); memmove(newVerbsDst, oldVerbsSrc, oldVerbSize); fVerbs = SkTAddOffset(fPoints, newSize); fFreeSpace += growSize; SkDEBUGCODE(this->validate();) } /** * Private, non-const-ptr version of the public function verbsMemBegin(). */ uint8_t* verbsMemWritable() { SkDEBUGCODE(this->validate();) return fVerbs - fVerbCnt; } /** * Gets the total amount of space allocated for verbs, points, and reserve. */ size_t currSize() const { return reinterpret_cast(fVerbs) - reinterpret_cast(fPoints); } /** * Called the first time someone calls CreateEmpty to actually create the singleton. */ friend SkPathRef* sk_create_empty_pathref(); void setIsOval(bool isOval, bool isCCW, unsigned start) { fIsOval = isOval; fRRectOrOvalIsCCW = isCCW; fRRectOrOvalStartIdx = SkToU8(start); } void setIsRRect(bool isRRect, bool isCCW, unsigned start) { fIsRRect = isRRect; fRRectOrOvalIsCCW = isCCW; fRRectOrOvalStartIdx = SkToU8(start); } // called only by the editor. Note that this is not a const function. SkPoint* getPoints() { SkDEBUGCODE(this->validate();) fIsOval = false; fIsRRect = false; return fPoints; } const SkPoint* getPoints() const { SkDEBUGCODE(this->validate();) return fPoints; } void callGenIDChangeListeners(); enum { kMinSize = 256, }; mutable SkRect fBounds; SkPoint* fPoints; // points to begining of the allocation uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards) int fVerbCnt; int fPointCnt; size_t fFreeSpace; // redundant but saves computation SkTDArray fConicWeights; enum { kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs. }; mutable uint32_t fGenerationID; SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time. SkMutex fGenIDChangeListenersMutex; SkTDArray fGenIDChangeListeners; // pointers are reffed mutable uint8_t fBoundsIsDirty; mutable bool fIsFinite; // only meaningful if bounds are valid bool fIsOval; bool fIsRRect; // Both the circle and rrect special cases have a notion of direction and starting point // The next two variables store that information for either. bool fRRectOrOvalIsCCW; uint8_t fRRectOrOvalStartIdx; uint8_t fSegmentMask; friend class PathRefTest_Private; friend class ForceIsRRect_Private; // unit test isRRect friend class SkPath; }; #endif