/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/SkNx.h" #include "include/utils/SkRandom.h" #include "src/core/Sk4px.h" #include "tests/Test.h" template static void test_Nf(skiatest::Reporter* r) { auto assert_nearly_eq = [&](float eps, const SkNx& v, float a, float b, float c, float d) { auto close = [=](float a, float b) { return fabsf(a-b) <= eps; }; float vals[4]; v.store(vals); bool ok = close(vals[0], a) && close(vals[1], b) && close( v[0], a) && close( v[1], b); REPORTER_ASSERT(r, ok); if (N == 4) { ok = close(vals[2], c) && close(vals[3], d) && close( v[2], c) && close( v[3], d); REPORTER_ASSERT(r, ok); } }; auto assert_eq = [&](const SkNx& v, float a, float b, float c, float d) { return assert_nearly_eq(0, v, a,b,c,d); }; float vals[] = {3, 4, 5, 6}; SkNx a = SkNx::Load(vals), b(a), c = a; SkNx d; d = a; assert_eq(a, 3, 4, 5, 6); assert_eq(b, 3, 4, 5, 6); assert_eq(c, 3, 4, 5, 6); assert_eq(d, 3, 4, 5, 6); assert_eq(a+b, 6, 8, 10, 12); assert_eq(a*b, 9, 16, 25, 36); assert_eq(a*b-b, 6, 12, 20, 30); assert_eq((a*b).sqrt(), 3, 4, 5, 6); assert_eq(a/b, 1, 1, 1, 1); assert_eq(SkNx(0)-a, -3, -4, -5, -6); SkNx fours(4); assert_eq(fours.sqrt(), 2,2,2,2); assert_eq(SkNx::Min(a, fours), 3, 4, 4, 4); assert_eq(SkNx::Max(a, fours), 4, 4, 5, 6); // Test some comparisons. This is not exhaustive. REPORTER_ASSERT(r, (a == b).allTrue()); REPORTER_ASSERT(r, (a+b == a*b-b).anyTrue()); REPORTER_ASSERT(r, !(a+b == a*b-b).allTrue()); REPORTER_ASSERT(r, !(a+b == a*b).anyTrue()); REPORTER_ASSERT(r, !(a != b).anyTrue()); REPORTER_ASSERT(r, (a < fours).anyTrue()); REPORTER_ASSERT(r, (a <= fours).anyTrue()); REPORTER_ASSERT(r, !(a > fours).allTrue()); REPORTER_ASSERT(r, !(a >= fours).allTrue()); } DEF_TEST(SkNf, r) { test_Nf<2>(r); test_Nf<4>(r); } template void test_Ni(skiatest::Reporter* r) { auto assert_eq = [&](const SkNx& v, T a, T b, T c, T d, T e, T f, T g, T h) { T vals[8]; v.store(vals); switch (N) { case 8: REPORTER_ASSERT(r, vals[4] == e && vals[5] == f && vals[6] == g && vals[7] == h); [[fallthrough]]; case 4: REPORTER_ASSERT(r, vals[2] == c && vals[3] == d); [[fallthrough]]; case 2: REPORTER_ASSERT(r, vals[0] == a && vals[1] == b); } switch (N) { case 8: REPORTER_ASSERT(r, v[4] == e && v[5] == f && v[6] == g && v[7] == h); [[fallthrough]]; case 4: REPORTER_ASSERT(r, v[2] == c && v[3] == d); [[fallthrough]]; case 2: REPORTER_ASSERT(r, v[0] == a && v[1] == b); } }; T vals[] = { 1,2,3,4,5,6,7,8 }; SkNx a = SkNx::Load(vals), b(a), c = a; SkNx d; d = a; assert_eq(a, 1,2,3,4,5,6,7,8); assert_eq(b, 1,2,3,4,5,6,7,8); assert_eq(c, 1,2,3,4,5,6,7,8); assert_eq(d, 1,2,3,4,5,6,7,8); assert_eq(a+a, 2,4,6,8,10,12,14,16); assert_eq(a*a, 1,4,9,16,25,36,49,64); assert_eq(a*a-a, 0,2,6,12,20,30,42,56); assert_eq(a >> 2, 0,0,0,1,1,1,1,2); assert_eq(a << 1, 2,4,6,8,10,12,14,16); REPORTER_ASSERT(r, a[1] == 2); } DEF_TEST(SkNx, r) { test_Ni<2, uint16_t>(r); test_Ni<4, uint16_t>(r); test_Ni<8, uint16_t>(r); test_Ni<2, int>(r); test_Ni<4, int>(r); test_Ni<8, int>(r); } DEF_TEST(SkNi_min_lt, r) { // Exhaustively check the 8x8 bit space. for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { Sk16b aw(a), bw(b); REPORTER_ASSERT(r, Sk16b::Min(aw, bw)[0] == std::min(a, b)); REPORTER_ASSERT(r, !(aw < bw)[0] == !(a < b)); }} // Exhausting the 16x16 bit space is kind of slow, so only do that in release builds. #ifdef SK_DEBUG SkRandom rand; for (int i = 0; i < (1<<16); i++) { uint16_t a = rand.nextU() >> 16, b = rand.nextU() >> 16; REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == std::min(a, b)); } #else for (int a = 0; a < (1<<16); a++) { for (int b = 0; b < (1<<16); b++) { REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == std::min(a, b)); }} #endif } DEF_TEST(SkNi_saturatedAdd, r) { for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { int exact = a+b; if (exact > 255) { exact = 255; } if (exact < 0) { exact = 0; } REPORTER_ASSERT(r, Sk16b(a).saturatedAdd(Sk16b(b))[0] == exact); } } } DEF_TEST(SkNi_mulHi, r) { // First 8 primes. Sk4u a{ 0x00020000, 0x00030000, 0x00050000, 0x00070000 }; Sk4u b{ 0x000b0000, 0x000d0000, 0x00110000, 0x00130000 }; Sk4u q{22, 39, 85, 133}; Sk4u c = a.mulHi(b); REPORTER_ASSERT(r, c[0] == q[0]); REPORTER_ASSERT(r, c[1] == q[1]); REPORTER_ASSERT(r, c[2] == q[2]); REPORTER_ASSERT(r, c[3] == q[3]); } DEF_TEST(Sk4px_muldiv255round, r) { for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { int exact = (a*b+127)/255; // Duplicate a and b 16x each. Sk4px av = Sk16b(a), bv = Sk16b(b); // This way should always be exactly correct. int correct = (av * bv).div255()[0]; REPORTER_ASSERT(r, correct == exact); // We're a bit more flexible on this method: correct for 0 or 255, otherwise off by <=1. int fast = av.approxMulDiv255(bv)[0]; REPORTER_ASSERT(r, fast-exact >= -1 && fast-exact <= 1); if (a == 0 || a == 255 || b == 0 || b == 255) { REPORTER_ASSERT(r, fast == exact); } } } } DEF_TEST(SkNx_abs, r) { auto fs = Sk4f(0.0f, -0.0f, 2.0f, -4.0f).abs(); REPORTER_ASSERT(r, fs[0] == 0.0f); REPORTER_ASSERT(r, fs[1] == 0.0f); REPORTER_ASSERT(r, fs[2] == 2.0f); REPORTER_ASSERT(r, fs[3] == 4.0f); auto fshi = Sk2f(0.0f, -0.0f).abs(); auto fslo = Sk2f(2.0f, -4.0f).abs(); REPORTER_ASSERT(r, fshi[0] == 0.0f); REPORTER_ASSERT(r, fshi[1] == 0.0f); REPORTER_ASSERT(r, fslo[0] == 2.0f); REPORTER_ASSERT(r, fslo[1] == 4.0f); } DEF_TEST(Sk4i_abs, r) { auto is = Sk4i(0, -1, 2, -2147483647).abs(); REPORTER_ASSERT(r, is[0] == 0); REPORTER_ASSERT(r, is[1] == 1); REPORTER_ASSERT(r, is[2] == 2); REPORTER_ASSERT(r, is[3] == 2147483647); } DEF_TEST(Sk4i_minmax, r) { auto a = Sk4i(0, 2, 4, 6); auto b = Sk4i(1, 1, 3, 7); auto min = Sk4i::Min(a, b); auto max = Sk4i::Max(a, b); for(int i = 0; i < 4; ++i) { REPORTER_ASSERT(r, min[i] == std::min(a[i], b[i])); REPORTER_ASSERT(r, max[i] == std::max(a[i], b[i])); } } DEF_TEST(SkNx_floor, r) { auto fs = Sk4f(0.4f, -0.4f, 0.6f, -0.6f).floor(); REPORTER_ASSERT(r, fs[0] == 0.0f); REPORTER_ASSERT(r, fs[1] == -1.0f); REPORTER_ASSERT(r, fs[2] == 0.0f); REPORTER_ASSERT(r, fs[3] == -1.0f); auto fs2 = Sk2f(0.4f, -0.4f).floor(); REPORTER_ASSERT(r, fs2[0] == 0.0f); REPORTER_ASSERT(r, fs2[1] == -1.0f); auto fs3 = Sk2f(0.6f, -0.6f).floor(); REPORTER_ASSERT(r, fs3[0] == 0.0f); REPORTER_ASSERT(r, fs3[1] == -1.0f); } DEF_TEST(SkNx_shuffle, r) { Sk4f f4(0,10,20,30); Sk2f f2 = SkNx_shuffle<2,1>(f4); REPORTER_ASSERT(r, f2[0] == 20); REPORTER_ASSERT(r, f2[1] == 10); f4 = SkNx_shuffle<0,1,1,0>(f2); REPORTER_ASSERT(r, f4[0] == 20); REPORTER_ASSERT(r, f4[1] == 10); REPORTER_ASSERT(r, f4[2] == 10); REPORTER_ASSERT(r, f4[3] == 20); } DEF_TEST(SkNx_int_float, r) { Sk4f f(-2.3f, 1.0f, 0.45f, 0.6f); Sk4i i = SkNx_cast(f); REPORTER_ASSERT(r, i[0] == -2); REPORTER_ASSERT(r, i[1] == 1); REPORTER_ASSERT(r, i[2] == 0); REPORTER_ASSERT(r, i[3] == 0); f = SkNx_cast(i); REPORTER_ASSERT(r, f[0] == -2.0f); REPORTER_ASSERT(r, f[1] == 1.0f); REPORTER_ASSERT(r, f[2] == 0.0f); REPORTER_ASSERT(r, f[3] == 0.0f); } #include "include/utils/SkRandom.h" DEF_TEST(SkNx_u16_float, r) { { // u16 --> float auto h4 = Sk4h(15, 17, 257, 65535); auto f4 = SkNx_cast(h4); REPORTER_ASSERT(r, f4[0] == 15.0f); REPORTER_ASSERT(r, f4[1] == 17.0f); REPORTER_ASSERT(r, f4[2] == 257.0f); REPORTER_ASSERT(r, f4[3] == 65535.0f); } { // float -> u16 auto f4 = Sk4f(15, 17, 257, 65535); auto h4 = SkNx_cast(f4); REPORTER_ASSERT(r, h4[0] == 15); REPORTER_ASSERT(r, h4[1] == 17); REPORTER_ASSERT(r, h4[2] == 257); REPORTER_ASSERT(r, h4[3] == 65535); } // starting with any u16 value, we should be able to have a perfect round-trip in/out of floats // SkRandom rand; for (int i = 0; i < 10000; ++i) { const uint16_t s16[4] { (uint16_t)(rand.nextU() >> 16), (uint16_t)(rand.nextU() >> 16), (uint16_t)(rand.nextU() >> 16), (uint16_t)(rand.nextU() >> 16), }; auto u4_0 = Sk4h::Load(s16); auto f4 = SkNx_cast(u4_0); auto u4_1 = SkNx_cast(f4); uint16_t d16[4]; u4_1.store(d16); REPORTER_ASSERT(r, !memcmp(s16, d16, sizeof(s16))); } } // The SSE2 implementation of SkNx_cast(Sk4i) is non-trivial, so worth a test. DEF_TEST(SkNx_int_u16, r) { // These are pretty hard to get wrong. for (int i = 0; i <= 0x7fff; i++) { uint16_t expected = (uint16_t)i; uint16_t actual = SkNx_cast(Sk4i(i))[0]; REPORTER_ASSERT(r, expected == actual); } // A naive implementation with _mm_packs_epi32 would succeed up to 0x7fff but fail here: for (int i = 0x8000; (1) && i <= 0xffff; i++) { uint16_t expected = (uint16_t)i; uint16_t actual = SkNx_cast(Sk4i(i))[0]; REPORTER_ASSERT(r, expected == actual); } } DEF_TEST(SkNx_4fLoad4Store4, r) { float src[] = { 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f }; Sk4f a, b, c, d; Sk4f::Load4(src, &a, &b, &c, &d); REPORTER_ASSERT(r, 0.0f == a[0]); REPORTER_ASSERT(r, 4.0f == a[1]); REPORTER_ASSERT(r, 8.0f == a[2]); REPORTER_ASSERT(r, 12.0f == a[3]); REPORTER_ASSERT(r, 1.0f == b[0]); REPORTER_ASSERT(r, 5.0f == b[1]); REPORTER_ASSERT(r, 9.0f == b[2]); REPORTER_ASSERT(r, 13.0f == b[3]); REPORTER_ASSERT(r, 2.0f == c[0]); REPORTER_ASSERT(r, 6.0f == c[1]); REPORTER_ASSERT(r, 10.0f == c[2]); REPORTER_ASSERT(r, 14.0f == c[3]); REPORTER_ASSERT(r, 3.0f == d[0]); REPORTER_ASSERT(r, 7.0f == d[1]); REPORTER_ASSERT(r, 11.0f == d[2]); REPORTER_ASSERT(r, 15.0f == d[3]); float dst[16]; Sk4f::Store4(dst, a, b, c, d); REPORTER_ASSERT(r, 0 == memcmp(dst, src, 16 * sizeof(float))); } DEF_TEST(SkNx_neg, r) { auto fs = -Sk4f(0.0f, -0.0f, 2.0f, -4.0f); REPORTER_ASSERT(r, fs[0] == 0.0f); REPORTER_ASSERT(r, fs[1] == 0.0f); REPORTER_ASSERT(r, fs[2] == -2.0f); REPORTER_ASSERT(r, fs[3] == 4.0f); auto fshi = -Sk2f(0.0f, -0.0f); auto fslo = -Sk2f(2.0f, -4.0f); REPORTER_ASSERT(r, fshi[0] == 0.0f); REPORTER_ASSERT(r, fshi[1] == 0.0f); REPORTER_ASSERT(r, fslo[0] == -2.0f); REPORTER_ASSERT(r, fslo[1] == 4.0f); } DEF_TEST(SkNx_thenElse, r) { auto fs = (Sk4f(0.0f, -0.0f, 2.0f, -4.0f) < 0).thenElse(-1, 1); REPORTER_ASSERT(r, fs[0] == 1); REPORTER_ASSERT(r, fs[1] == 1); REPORTER_ASSERT(r, fs[2] == 1); REPORTER_ASSERT(r, fs[3] == -1); auto fshi = (Sk2f(0.0f, -0.0f) < 0).thenElse(-1, 1); auto fslo = (Sk2f(2.0f, -4.0f) < 0).thenElse(-1, 1); REPORTER_ASSERT(r, fshi[0] == 1); REPORTER_ASSERT(r, fshi[1] == 1); REPORTER_ASSERT(r, fslo[0] == 1); REPORTER_ASSERT(r, fslo[1] == -1); } DEF_TEST(Sk4f_Load2, r) { float xy[8] = { 0,1,2,3,4,5,6,7 }; Sk4f x,y; Sk4f::Load2(xy, &x,&y); REPORTER_ASSERT(r, x[0] == 0); REPORTER_ASSERT(r, x[1] == 2); REPORTER_ASSERT(r, x[2] == 4); REPORTER_ASSERT(r, x[3] == 6); REPORTER_ASSERT(r, y[0] == 1); REPORTER_ASSERT(r, y[1] == 3); REPORTER_ASSERT(r, y[2] == 5); REPORTER_ASSERT(r, y[3] == 7); } DEF_TEST(Sk2f_Load2, r) { float xy[4] = { 0,1,2,3 }; Sk2f x,y; Sk2f::Load2(xy, &x,&y); REPORTER_ASSERT(r, x[0] == 0); REPORTER_ASSERT(r, x[1] == 2); REPORTER_ASSERT(r, y[0] == 1); REPORTER_ASSERT(r, y[1] == 3); } DEF_TEST(Sk2f_Store2, r) { Sk2f p0{0, 2}; Sk2f p1{1, 3}; float dst[4]; Sk2f::Store2(dst, p0, p1); REPORTER_ASSERT(r, dst[0] == 0); REPORTER_ASSERT(r, dst[1] == 1); REPORTER_ASSERT(r, dst[2] == 2); REPORTER_ASSERT(r, dst[3] == 3); } DEF_TEST(Sk2f_Store3, r) { Sk2f p0{0, 3}; Sk2f p1{1, 4}; Sk2f p2{2, 5}; float dst[6]; Sk2f::Store3(dst, p0, p1, p2); REPORTER_ASSERT(r, dst[0] == 0); REPORTER_ASSERT(r, dst[1] == 1); REPORTER_ASSERT(r, dst[2] == 2); REPORTER_ASSERT(r, dst[3] == 3); REPORTER_ASSERT(r, dst[4] == 4); REPORTER_ASSERT(r, dst[5] == 5); } DEF_TEST(Sk2f_Store4, r) { Sk2f p0{0, 4}; Sk2f p1{1, 5}; Sk2f p2{2, 6}; Sk2f p3{3, 7}; float dst[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; Sk2f::Store4(dst, p0, p1, p2, p3); REPORTER_ASSERT(r, dst[0] == 0); REPORTER_ASSERT(r, dst[1] == 1); REPORTER_ASSERT(r, dst[2] == 2); REPORTER_ASSERT(r, dst[3] == 3); REPORTER_ASSERT(r, dst[4] == 4); REPORTER_ASSERT(r, dst[5] == 5); REPORTER_ASSERT(r, dst[6] == 6); REPORTER_ASSERT(r, dst[7] == 7); // Ensure transposing to Sk4f works. Sk4f dst4f[2] = {{-1, -1, -1, -1}, {-1, -1, -1, -1}}; Sk2f::Store4(dst4f, p0, p1, p2, p3); REPORTER_ASSERT(r, dst4f[0][0] == 0); REPORTER_ASSERT(r, dst4f[0][1] == 1); REPORTER_ASSERT(r, dst4f[0][2] == 2); REPORTER_ASSERT(r, dst4f[0][3] == 3); REPORTER_ASSERT(r, dst4f[1][0] == 4); REPORTER_ASSERT(r, dst4f[1][1] == 5); REPORTER_ASSERT(r, dst4f[1][2] == 6); REPORTER_ASSERT(r, dst4f[1][3] == 7); } DEF_TEST(Sk4f_minmax, r) { REPORTER_ASSERT(r, 3 == Sk4f(0,1,2,3).max()); REPORTER_ASSERT(r, 2 == Sk4f(1,-5,2,-1).max()); REPORTER_ASSERT(r, -1 == Sk4f(-2,-1,-6,-3).max()); REPORTER_ASSERT(r, 3 == Sk4f(3,2,1,0).max()); REPORTER_ASSERT(r, 0 == Sk4f(0,1,2,3).min()); REPORTER_ASSERT(r, -5 == Sk4f(1,-5,2,-1).min()); REPORTER_ASSERT(r, -6 == Sk4f(-2,-1,-6,-3).min()); REPORTER_ASSERT(r, 0 == Sk4f(3,2,1,0).min()); } DEF_TEST(SkNf_anyTrue_allTrue, r) { REPORTER_ASSERT(r, (Sk2f{1,2} < Sk2f{3,4}).anyTrue()); REPORTER_ASSERT(r, (Sk2f{1,2} < Sk2f{3,4}).allTrue()); REPORTER_ASSERT(r, (Sk2f{3,2} < Sk2f{1,4}).anyTrue()); REPORTER_ASSERT(r, !(Sk2f{3,2} < Sk2f{1,4}).allTrue()); REPORTER_ASSERT(r, !(Sk2f{3,4} < Sk2f{1,2}).anyTrue()); REPORTER_ASSERT(r, (Sk4f{1,2,3,4} < Sk4f{3,4,5,6}).anyTrue()); REPORTER_ASSERT(r, (Sk4f{1,2,3,4} < Sk4f{3,4,5,6}).allTrue()); REPORTER_ASSERT(r, (Sk4f{1,2,3,4} < Sk4f{1,4,1,1}).anyTrue()); REPORTER_ASSERT(r, !(Sk4f{1,2,3,4} < Sk4f{1,4,1,1}).allTrue()); REPORTER_ASSERT(r, !(Sk4f{3,4,5,6} < Sk4f{1,2,3,4}).anyTrue()); }