/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "include/core/SkCanvas.h" #include "include/core/SkSurface.h" #include "include/gpu/GrContext.h" #include "include/private/SkColorData.h" #include "include/private/SkHalf.h" #include "include/private/SkImageInfoPriv.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkMathPriv.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrProxyProvider.h" #include "src/gpu/SkGr.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/gpu/GrContextFactory.h" #include "tools/gpu/ProxyUtils.h" static const int DEV_W = 100, DEV_H = 100; static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H); static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1, DEV_H * SK_Scalar1); static SkPMColor get_src_color(int x, int y) { SkASSERT(x >= 0 && x < DEV_W); SkASSERT(y >= 0 && y < DEV_H); U8CPU r = x; U8CPU g = y; U8CPU b = 0xc; U8CPU a = 0xff; switch ((x+y) % 5) { case 0: a = 0xff; break; case 1: a = 0x80; break; case 2: a = 0xCC; break; case 4: a = 0x01; break; case 3: a = 0x00; break; } return SkPremultiplyARGBInline(a, r, g, b); } static SkPMColor get_dst_bmp_init_color(int x, int y, int w) { int n = y * w + x; U8CPU b = n & 0xff; U8CPU g = (n >> 8) & 0xff; U8CPU r = (n >> 16) & 0xff; return SkPackARGB32(0xff, r, g , b); } // TODO: Make this consider both ATs static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr, bool* doUnpremul) { *doUnpremul = (kUnpremul_SkAlphaType == at); const uint8_t* c = reinterpret_cast(addr); U8CPU a,r,g,b; switch (ct) { case kBGRA_8888_SkColorType: b = static_cast(c[0]); g = static_cast(c[1]); r = static_cast(c[2]); a = static_cast(c[3]); break; case kRGB_888x_SkColorType: // fallthrough case kRGBA_8888_SkColorType: r = static_cast(c[0]); g = static_cast(c[1]); b = static_cast(c[2]); // We set this even when for kRGB_888x because our caller will validate that it is 0xff. a = static_cast(c[3]); break; default: SkDEBUGFAIL("Unexpected colortype"); return 0; } if (*doUnpremul) { r = SkMulDiv255Ceiling(r, a); g = SkMulDiv255Ceiling(g, a); b = SkMulDiv255Ceiling(b, a); } return SkPackARGB32(a, r, g, b); } static SkBitmap make_src_bitmap() { static SkBitmap bmp; if (bmp.isNull()) { bmp.allocN32Pixels(DEV_W, DEV_H); intptr_t pixels = reinterpret_cast(bmp.getPixels()); for (int y = 0; y < DEV_H; ++y) { for (int x = 0; x < DEV_W; ++x) { SkPMColor* pixel = reinterpret_cast(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel()); *pixel = get_src_color(x, y); } } } return bmp; } static void fill_src_canvas(SkCanvas* canvas) { canvas->save(); canvas->setMatrix(SkMatrix::I()); canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint); canvas->restore(); } static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) { int w = bitmap->width(); int h = bitmap->height(); intptr_t pixels = reinterpret_cast(bitmap->getPixels()); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { SkPMColor initColor = get_dst_bmp_init_color(x, y, w); if (kAlpha_8_SkColorType == bitmap->colorType()) { uint8_t* alpha = reinterpret_cast(pixels + y * bitmap->rowBytes() + x); *alpha = SkGetPackedA32(initColor); } else { SkPMColor* pixel = reinterpret_cast(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel()); *pixel = initColor; } } } } static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) { if (!didPremulConversion) { return a == b; } int32_t aA = static_cast(SkGetPackedA32(a)); int32_t aR = static_cast(SkGetPackedR32(a)); int32_t aG = static_cast(SkGetPackedG32(a)); int32_t aB = SkGetPackedB32(a); int32_t bA = static_cast(SkGetPackedA32(b)); int32_t bR = static_cast(SkGetPackedR32(b)); int32_t bG = static_cast(SkGetPackedG32(b)); int32_t bB = static_cast(SkGetPackedB32(b)); return aA == bA && SkAbs32(aR - bR) <= 1 && SkAbs32(aG - bG) <= 1 && SkAbs32(aB - bB) <= 1; } // checks the bitmap contains correct pixels after the readPixels // if the bitmap was prefilled with pixels it checks that these weren't // overwritten in the area outside the readPixels. static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y, bool checkSurfacePixels, bool checkBitmapPixels, SkImageInfo surfaceInfo) { SkAlphaType bmpAT = bitmap.alphaType(); SkColorType bmpCT = bitmap.colorType(); SkASSERT(!bitmap.isNull()); SkASSERT(checkSurfacePixels || checkBitmapPixels); int bw = bitmap.width(); int bh = bitmap.height(); SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh); SkIRect clippedSrcRect = DEV_RECT; if (!clippedSrcRect.intersect(srcRect)) { clippedSrcRect.setEmpty(); } if (kAlpha_8_SkColorType == bmpCT) { for (int by = 0; by < bh; ++by) { for (int bx = 0; bx < bw; ++bx) { int devx = bx + srcRect.fLeft; int devy = by + srcRect.fTop; const uint8_t* alpha = bitmap.getAddr8(bx, by); if (clippedSrcRect.contains(devx, devy)) { if (checkSurfacePixels) { uint8_t surfaceAlpha = (surfaceInfo.alphaType() == kOpaque_SkAlphaType) ? 0xFF : SkGetPackedA32(get_src_color(devx, devy)); if (surfaceAlpha != *alpha) { ERRORF(reporter, "Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ", bx, by, surfaceAlpha, *alpha); return false; } } } else if (checkBitmapPixels) { uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw)); if (origDstAlpha != *alpha) { ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " "Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha); return false; } } } } return true; } for (int by = 0; by < bh; ++by) { for (int bx = 0; bx < bw; ++bx) { int devx = bx + srcRect.fLeft; int devy = by + srcRect.fTop; const uint32_t* pixel = bitmap.getAddr32(bx, by); if (clippedSrcRect.contains(devx, devy)) { if (checkSurfacePixels) { SkPMColor surfacePMColor = get_src_color(devx, devy); if (SkColorTypeIsAlphaOnly(surfaceInfo.colorType())) { surfacePMColor &= 0xFF000000; } if (kOpaque_SkAlphaType == surfaceInfo.alphaType() || kOpaque_SkAlphaType == bmpAT) { surfacePMColor |= 0xFF000000; } bool didPremul; SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul); if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) { ERRORF(reporter, "Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. " "Readback was unpremul: %d", bx, by, surfacePMColor, pmPixel, didPremul); return false; } } } else if (checkBitmapPixels) { uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw); if (origDstPixel != *pixel) { ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " "Expected 0x%08x, got 0x%08x", origDstPixel, *pixel); return false; } } } } return true; } enum BitmapInit { kFirstBitmapInit = 0, kTight_BitmapInit = kFirstBitmapInit, kRowBytes_BitmapInit, kRowBytesOdd_BitmapInit, kLastAligned_BitmapInit = kRowBytes_BitmapInit, #if 0 // THIS CAUSES ERRORS ON WINDOWS AND SOME ANDROID DEVICES kLast_BitmapInit = kRowBytesOdd_BitmapInit #else kLast_BitmapInit = kLastAligned_BitmapInit #endif }; static BitmapInit nextBMI(BitmapInit bmi) { int x = bmi; return static_cast(++x); } static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, BitmapInit init, SkColorType ct, SkAlphaType at) { SkImageInfo info = SkImageInfo::Make(rect.width(), rect.height(), ct, at); size_t rowBytes = 0; switch (init) { case kTight_BitmapInit: break; case kRowBytes_BitmapInit: rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel()); break; case kRowBytesOdd_BitmapInit: rowBytes = SkAlign4(info.width() * info.bytesPerPixel()) + 3; break; default: SkASSERT(0); break; } bitmap->allocPixels(info, rowBytes); } static const struct { SkColorType fColorType; SkAlphaType fAlphaType; } gReadPixelsConfigs[] = { {kRGBA_8888_SkColorType, kPremul_SkAlphaType}, {kRGBA_8888_SkColorType, kUnpremul_SkAlphaType}, {kRGB_888x_SkColorType, kOpaque_SkAlphaType}, {kBGRA_8888_SkColorType, kPremul_SkAlphaType}, {kBGRA_8888_SkColorType, kUnpremul_SkAlphaType}, {kAlpha_8_SkColorType, kPremul_SkAlphaType}, }; const SkIRect gReadPixelsTestRects[] = { // entire thing DEV_RECT, // larger on all sides SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10), // fully contained SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4), // outside top right corner SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1), // touching top right corner SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10), }; bool read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo, const SkImageInfo& srcInfo) { return SkIRect::Intersects(srcRect, DEV_RECT) && SkImageInfoValidConversion(dstInfo, srcInfo); } static void test_readpixels(skiatest::Reporter* reporter, const sk_sp& surface, const SkImageInfo& surfaceInfo, BitmapInit lastBitmapInit) { SkCanvas* canvas = surface->getCanvas(); fill_src_canvas(canvas); for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { const SkIRect& srcRect = gReadPixelsTestRects[rect]; for (BitmapInit bmi = kFirstBitmapInit; bmi <= lastBitmapInit; bmi = nextBMI(bmi)) { for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { SkBitmap bmp; init_bitmap(&bmp, srcRect, bmi, gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType); // if the bitmap has pixels allocated before the readPixels, // note that and fill them with pattern bool startsWithPixels = !bmp.isNull(); if (startsWithPixels) { fill_dst_bmp_with_init_data(&bmp); } uint32_t idBefore = surface->generationID(); bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop); uint32_t idAfter = surface->generationID(); // we expect to succeed when the read isn't fully clipped out and the infos are // compatible. bool expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); // determine whether we expected the read to succeed. REPORTER_ASSERT(reporter, expectSuccess == success, "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", success, surfaceInfo.colorType(), surfaceInfo.alphaType(), bmp.info().colorType(), bmp.info().alphaType()); // read pixels should never change the gen id REPORTER_ASSERT(reporter, idBefore == idAfter); if (success || startsWithPixels) { check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, startsWithPixels, surfaceInfo); } else { // if we had no pixels beforehand and the readPixels // failed then our bitmap should still not have pixels REPORTER_ASSERT(reporter, bmp.isNull()); } } } } } DEF_TEST(ReadPixels, reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H); auto surface(SkSurface::MakeRaster(info)); // SW readback fails a premul check when reading back to an unaligned rowbytes. test_readpixels(reporter, surface, info, kLastAligned_BitmapInit); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) { static const SkImageInfo kImageInfos[] = { SkImageInfo::Make(DEV_W, DEV_H, kRGBA_8888_SkColorType, kPremul_SkAlphaType), SkImageInfo::Make(DEV_W, DEV_H, kBGRA_8888_SkColorType, kPremul_SkAlphaType), SkImageInfo::Make(DEV_W, DEV_H, kRGB_888x_SkColorType, kOpaque_SkAlphaType), SkImageInfo::Make(DEV_W, DEV_H, kAlpha_8_SkColorType, kPremul_SkAlphaType), }; for (const auto& ii : kImageInfos) { for (auto& origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) { sk_sp surface(SkSurface::MakeRenderTarget( ctxInfo.grContext(), SkBudgeted::kNo, ii, 0, origin, nullptr)); if (!surface) { continue; } test_readpixels(reporter, surface, ii, kLast_BitmapInit); } } } static void test_readpixels_texture(skiatest::Reporter* reporter, std::unique_ptr sContext, const SkImageInfo& surfaceInfo) { for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { const SkIRect& srcRect = gReadPixelsTestRects[rect]; for (BitmapInit bmi = kFirstBitmapInit; bmi <= kLast_BitmapInit; bmi = nextBMI(bmi)) { for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { SkBitmap bmp; init_bitmap(&bmp, srcRect, bmi, gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType); // if the bitmap has pixels allocated before the readPixels, // note that and fill them with pattern bool startsWithPixels = !bmp.isNull(); // Try doing the read directly from a non-renderable texture if (startsWithPixels) { fill_dst_bmp_with_init_data(&bmp); bool success = sContext->readPixels(bmp.info(), bmp.getPixels(), bmp.rowBytes(), {srcRect.fLeft, srcRect.fTop}); auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); REPORTER_ASSERT( reporter, expectSuccess == success, "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", success, surfaceInfo.colorType(), surfaceInfo.alphaType(), bmp.info().colorType(), bmp.info().alphaType()); if (success) { check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true, surfaceInfo); } } } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); SkBitmap bmp = make_src_bitmap(); // On the GPU we will also try reading back from a non-renderable texture. for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) { for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { sk_sp proxy = sk_gpu_test::MakeTextureProxyFromData( context, renderable, DEV_W, DEV_H, bmp.colorType(), bmp.alphaType(), origin, bmp.getPixels(), bmp.rowBytes()); auto sContext = context->priv().makeWrappedSurfaceContext( std::move(proxy), SkColorTypeToGrColorType(bmp.colorType()), kPremul_SkAlphaType); auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType); test_readpixels_texture(reporter, std::move(sContext), info); } } } /////////////////////////////////////////////////////////////////////////////////////////////////// static const uint32_t kNumPixels = 5; // The five reference pixels are: red, green, blue, white, black. // Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector // plus a tail pixel. static const uint32_t rgba[kNumPixels] = { 0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000 }; static const uint32_t bgra[kNumPixels] = { 0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000 }; static const uint16_t rgb565[kNumPixels] = { SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0 }; static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F }; static const uint64_t kRed = (uint64_t) SK_Half1 << 0; static const uint64_t kGreen = (uint64_t) SK_Half1 << 16; static const uint64_t kBlue = (uint64_t) SK_Half1 << 32; static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48; static const uint64_t f16[kNumPixels] = { kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha }; static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const void* five_reference_pixels(SkColorType colorType) { switch (colorType) { case kUnknown_SkColorType: return nullptr; case kAlpha_8_SkColorType: return alpha8; case kRGB_565_SkColorType: return rgb565; case kARGB_4444_SkColorType: return rgba4444; case kRGBA_8888_SkColorType: return rgba; case kBGRA_8888_SkColorType: return bgra; case kGray_8_SkColorType: return gray8; case kRGBA_F16_SkColorType: return f16; default: return nullptr; } SkASSERT(false); return nullptr; } static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo, const SkImageInfo& srcInfo) { if (!SkImageInfoIsValid(srcInfo)) { return; } const void* srcPixels = five_reference_pixels(srcInfo.colorType()); SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes()); sk_sp src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr); REPORTER_ASSERT(r, src); // Enough space for 5 pixels when color type is F16, more than enough space in other cases. uint64_t dstPixels[kNumPixels]; SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes()); bool success = src->readPixels(dstPixmap, 0, 0); REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo)); if (success) { if (kGray_8_SkColorType == srcInfo.colorType() && kGray_8_SkColorType != dstInfo.colorType()) { // TODO: test (r,g,b) == (gray,gray,gray)? return; } if (kGray_8_SkColorType == dstInfo.colorType() && kGray_8_SkColorType != srcInfo.colorType()) { // TODO: test gray = luminance? return; } if (kAlpha_8_SkColorType == srcInfo.colorType() && kAlpha_8_SkColorType != dstInfo.colorType()) { // TODO: test output = black with this alpha? return; } REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()), kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType()))); } } DEF_TEST(ReadPixels_ValidConversion, reporter) { const SkColorType kColorTypes[] = { kUnknown_SkColorType, kAlpha_8_SkColorType, kRGB_565_SkColorType, kARGB_4444_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType, kGray_8_SkColorType, kRGBA_F16_SkColorType, }; const SkAlphaType kAlphaTypes[] = { kUnknown_SkAlphaType, kOpaque_SkAlphaType, kPremul_SkAlphaType, kUnpremul_SkAlphaType, }; const sk_sp kColorSpaces[] = { nullptr, SkColorSpace::MakeSRGB(), }; for (SkColorType dstCT : kColorTypes) { for (SkAlphaType dstAT: kAlphaTypes) { for (sk_sp dstCS : kColorSpaces) { for (SkColorType srcCT : kColorTypes) { for (SkAlphaType srcAT: kAlphaTypes) { for (sk_sp srcCS : kColorSpaces) { test_conversion(reporter, SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS), SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS)); } } } } } } } static int min_rgb_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 8; case kAlpha_16_SkColorType: return 16; case kRGB_565_SkColorType: return 5; case kARGB_4444_SkColorType: return 4; case kRG_88_SkColorType: return 8; case kRG_1616_SkColorType: return 16; case kRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 8; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 10; case kRGB_101010x_SkColorType: return 10; case kGray_8_SkColorType: return 8; // counting gray as "rgb" case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGBA_F32_SkColorType: return 23; // just counting the mantissa } SK_ABORT("Unexpected color type."); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(AsyncReadPixels, reporter, ctxInfo) { struct Context { SkPixmap* fPixmap = nullptr; bool fSuceeded = false; bool fCalled = false; }; auto callback = [](SkSurface::ReleaseContext context, const void* data, size_t rowBytes) { auto* pm = static_cast(context)->fPixmap; static_cast(context)->fCalled = true; if ((static_cast(context)->fSuceeded = SkToBool(data))) { auto dst = static_cast(pm->writable_addr()); const auto* src = static_cast(data); for (int y = 0; y < pm->height(); ++y, src += rowBytes, dst += pm->rowBytes()) { memcpy(dst, src, pm->width() * SkColorTypeBytesPerPixel(pm->colorType())); } } }; for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { static constexpr int kW = 16; static constexpr int kH = 16; for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { auto surfCT = static_cast(sct); auto info = SkImageInfo::Make(kW, kH, surfCT, kPremul_SkAlphaType, nullptr); auto surf = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, info, 1, origin, nullptr); if (!surf) { continue; } float d = std::sqrt((float)surf->width() * surf->width() + (float)surf->height() * surf->height()); for (int j = 0; j < surf->height(); ++j) { for (int i = 0; i < surf->width(); ++i) { float r = i / (float)surf->width(); float g = 1.f - i / (float)surf->height(); float b = std::sqrt((float)i * i + (float)j * j) / d; SkPaint paint; paint.setColor4f(SkColor4f{r, g, b, 1.f}, nullptr); surf->getCanvas()->drawRect(SkRect::MakeXYWH(i, j, 1, 1), paint); } } for (const auto& rect : {SkIRect::MakeWH(kW, kH), // full size SkIRect::MakeLTRB(1, 2, kW - 3, kH - 4), // partial SkIRect::MakeXYWH(1, 1, 0, 0), // empty: fail SkIRect::MakeWH(kW + 1, kH / 2)}) { // too wide: fail for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { auto readCT = static_cast(rct); for (const sk_sp& readCS : {sk_sp(), SkColorSpace::MakeSRGBLinear()}) { SkAutoPixmapStorage result; Context context; context.fPixmap = &result; info = SkImageInfo::Make(rect.width(), rect.height(), readCT, kPremul_SkAlphaType, readCS); result.alloc(info); memset(result.writable_addr(), 0xAB, result.computeByteSize()); // Rescale quality and linearity don't matter since we're doing a non- // scaling readback. surf->asyncRescaleAndReadPixels(info, rect, SkSurface::RescaleGamma::kSrc, kNone_SkFilterQuality, callback, &context); while (!context.fCalled) { ctxInfo.grContext()->checkAsyncWorkCompletion(); } if (rect.isEmpty() || !SkIRect::MakeWH(kW, kH).contains(rect)) { REPORTER_ASSERT(reporter, !context.fSuceeded); } if (context.fSuceeded) { REPORTER_ASSERT(reporter, readCT != kUnknown_SkColorType && !rect.isEmpty()); } else { // TODO: Support reading to kGray. auto surfBounds = SkIRect::MakeWH(surf->width(), surf->height()); if (readCT != kUnknown_SkColorType && readCT != kGray_8_SkColorType && !rect.isEmpty() && surfBounds.contains(rect)) { ERRORF(reporter, "Async read failed. Surf Color Type: %d, Read CT: %d," "Rect [%d, %d, %d, %d], origin: %d, CS conversion: %d\n", surfCT, readCT, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, origin, (bool)readCS); } continue; } // We use a synchronous read as the source of truth. SkAutoPixmapStorage ref; ref.alloc(info); memset(ref.writable_addr(), 0xCD, ref.computeByteSize()); if (!surf->readPixels(ref, rect.fLeft, rect.fTop)) { continue; } // When there is no conversion, don't allow a difference. float tol = 0.f; if (readCS || readCT != surfCT) { // When there is a conversion allow a diff of two values when no // color space conversion and three otherwise. Except for alpha where // we allow no difference. Allow intermediate truncation to an 8 bit per // channel format. int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(surfCT), 8}); tol = (readCS ? 3.f : 2.f) / (1 << rgbBits); } const float tols[4] = {tol, tol, tol, 0}; auto error = std::function( [&](int x, int y, const float diffs[4]) { SkASSERT(x >= 0 && y >= 0); ERRORF(reporter, "Surf Color Type: %d, Read CT: %d, Rect [%d, %d, %d, %d]" ", origin: %d, CS conversion: %d\n" "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", surfCT, readCT, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, origin, (bool)readCS, x, y, diffs[0], diffs[1], diffs[2], diffs[3]); }); compare_pixels(ref, result, tols, error); } } } } } }