/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SkRegion_DEFINED #define SkRegion_DEFINED #include "SkRect.h" class SkPath; class SkRgnBuilder; namespace android { class Region; } #define SkRegion_gEmptyRunHeadPtr ((SkRegion::RunHead*)-1) #define SkRegion_gRectRunHeadPtr 0 /** \class SkRegion The SkRegion class encapsulates the geometric region used to specify clipping areas for drawing. */ class SkRegion { public: typedef int32_t RunType; enum { kRunTypeSentinel = 0x7FFFFFFF }; SkRegion(); SkRegion(const SkRegion&); explicit SkRegion(const SkIRect&); ~SkRegion(); SkRegion& operator=(const SkRegion&); friend int operator==(const SkRegion& a, const SkRegion& b); friend int operator!=(const SkRegion& a, const SkRegion& b) { return !(a == b); } /** Replace this region with the specified region, and return true if the resulting region is non-empty. */ bool set(const SkRegion& src) { SkASSERT(&src); *this = src; return !this->isEmpty(); } /** Swap the contents of this and the specified region. This operation is gauarenteed to never fail. */ void swap(SkRegion&); /** Return true if this region is empty */ bool isEmpty() const { return fRunHead == SkRegion_gEmptyRunHeadPtr; } /** Return true if this region is a single, non-empty rectangle */ bool isRect() const { return fRunHead == SkRegion_gRectRunHeadPtr; } /** Return true if this region consists of more than 1 rectangular area */ bool isComplex() const { return !this->isEmpty() && !this->isRect(); } /** Return the bounds of this region. If the region is empty, returns an empty rectangle. */ const SkIRect& getBounds() const { return fBounds; } /** Returns true if the region is non-empty, and if so, sets the specified path to the boundary(s) of the region. */ bool getBoundaryPath(SkPath* path) const; /** Set the region to be empty, and return false, since the resulting region is empty */ bool setEmpty(); /** If rect is non-empty, set this region to that rectangle and return true, otherwise set this region to empty and return false. */ bool setRect(const SkIRect&); /** If left < right and top < bottom, set this region to that rectangle and return true, otherwise set this region to empty and return false. */ bool setRect(int32_t left, int32_t top, int32_t right, int32_t bottom); /** Set this region to the union of an array of rects. This is generally faster than calling region.op(rect, kUnion_Op) in a loop. If count is 0, then this region is set to the empty region. @return true if the resulting region is non-empty */ bool setRects(const SkIRect rects[], int count); /** Set this region to the specified region, and return true if it is non-empty. */ bool setRegion(const SkRegion&); /** Set this region to the area described by the path, clipped. Return true if the resulting region is non-empty. This produces a region that is identical to the pixels that would be drawn by the path (with no antialiasing) with the specified clip. */ bool setPath(const SkPath&, const SkRegion& clip); /** Returns true if the specified rectangle has a non-empty intersection with this region. */ bool intersects(const SkIRect&) const; /** Returns true if the specified region has a non-empty intersection with this region. */ bool intersects(const SkRegion&) const; /** Return true if the specified x,y coordinate is inside the region. */ bool contains(int32_t x, int32_t y) const; /** Return true if the specified rectangle is completely inside the region. This works for simple (rectangular) and complex regions, and always returns the correct result. Note: if either this region or the rectangle is empty, contains() returns false. */ bool contains(const SkIRect&) const; /** Return true if the specified region is completely inside the region. This works for simple (rectangular) and complex regions, and always returns the correct result. Note: if either region is empty, contains() returns false. */ bool contains(const SkRegion&) const; /** Return true if this region is a single rectangle (not complex) and the specified rectangle is contained by this region. Returning false is not a guarantee that the rectangle is not contained by this region, but return true is a guarantee that the rectangle is contained by this region. */ bool quickContains(const SkIRect& r) const { return this->quickContains(r.fLeft, r.fTop, r.fRight, r.fBottom); } /** Return true if this region is a single rectangle (not complex) and the specified rectangle is contained by this region. Returning false is not a guarantee that the rectangle is not contained by this region, but return true is a guarantee that the rectangle is contained by this region. */ bool quickContains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { SkASSERT(this->isEmpty() == fBounds.isEmpty()); // valid region return left < right && top < bottom && fRunHead == SkRegion_gRectRunHeadPtr && // this->isRect() /* fBounds.contains(left, top, right, bottom); */ fBounds.fLeft <= left && fBounds.fTop <= top && fBounds.fRight >= right && fBounds.fBottom >= bottom; } /** Return true if this region is empty, or if the specified rectangle does not intersect the region. Returning false is not a guarantee that they intersect, but returning true is a guarantee that they do not. */ bool quickReject(const SkIRect& rect) const { return this->isEmpty() || rect.isEmpty() || !SkIRect::Intersects(fBounds, rect); } /** Return true if this region, or rgn, is empty, or if their bounds do not intersect. Returning false is not a guarantee that they intersect, but returning true is a guarantee that they do not. */ bool quickReject(const SkRegion& rgn) const { return this->isEmpty() || rgn.isEmpty() || !SkIRect::Intersects(fBounds, rgn.fBounds); } /** Translate the region by the specified (dx, dy) amount. */ void translate(int dx, int dy) { this->translate(dx, dy, this); } /** Translate the region by the specified (dx, dy) amount, writing the resulting region into dst. Note: it is legal to pass this region as the dst parameter, effectively translating the region in place. If dst is null, nothing happens. */ void translate(int dx, int dy, SkRegion* dst) const; /** The logical operations that can be performed when combining two regions. */ enum Op { kDifference_Op, //!< subtract the op region from the first region kIntersect_Op, //!< intersect the two regions kUnion_Op, //!< union (inclusive-or) the two regions kXOR_Op, //!< exclusive-or the two regions /** subtract the first region from the op region */ kReverseDifference_Op, kReplace_Op //!< replace the dst region with the op region }; /** Set this region to the result of applying the Op to this region and the specified rectangle: this = (this op rect). Return true if the resulting region is non-empty. */ bool op(const SkIRect& rect, Op op) { return this->op(*this, rect, op); } /** Set this region to the result of applying the Op to this region and the specified rectangle: this = (this op rect). Return true if the resulting region is non-empty. */ bool op(int left, int top, int right, int bottom, Op op) { SkIRect rect; rect.set(left, top, right, bottom); return this->op(*this, rect, op); } /** Set this region to the result of applying the Op to this region and the specified region: this = (this op rgn). Return true if the resulting region is non-empty. */ bool op(const SkRegion& rgn, Op op) { return this->op(*this, rgn, op); } /** Set this region to the result of applying the Op to the specified rectangle and region: this = (rect op rgn). Return true if the resulting region is non-empty. */ bool op(const SkIRect& rect, const SkRegion& rgn, Op); /** Set this region to the result of applying the Op to the specified region and rectangle: this = (rgn op rect). Return true if the resulting region is non-empty. */ bool op(const SkRegion& rgn, const SkIRect& rect, Op); /** Set this region to the result of applying the Op to the specified regions: this = (rgna op rgnb). Return true if the resulting region is non-empty. */ bool op(const SkRegion& rgna, const SkRegion& rgnb, Op op); #ifdef ANDROID /** Returns a new char* containing the list of rectangles in this region */ char* toString(); #endif /** Returns the sequence of rectangles, sorted in Y and X, that make up this region. */ class Iterator { public: Iterator() : fRgn(NULL), fDone(true) {} Iterator(const SkRegion&); // if we have a region, reset to it and return true, else return false bool rewind(); // reset the iterator, using the new region void reset(const SkRegion&); bool done() const { return fDone; } void next(); const SkIRect& rect() const { return fRect; } // may return null const SkRegion* rgn() const { return fRgn; } private: const SkRegion* fRgn; const RunType* fRuns; SkIRect fRect; bool fDone; }; /** Returns the sequence of rectangles, sorted in Y and X, that make up this region intersected with the specified clip rectangle. */ class Cliperator { public: Cliperator(const SkRegion&, const SkIRect& clip); bool done() { return fDone; } void next(); const SkIRect& rect() const { return fRect; } private: Iterator fIter; SkIRect fClip; SkIRect fRect; bool fDone; }; /** Returns the sequence of runs that make up this region for the specified Y scanline, clipped to the specified left and right X values. */ class Spanerator { public: Spanerator(const SkRegion&, int y, int left, int right); bool next(int* left, int* right); private: const SkRegion::RunType* fRuns; int fLeft, fRight; bool fDone; }; /** Write the region to the buffer, and return the number of bytes written. If buffer is NULL, it still returns the number of bytes. */ uint32_t flatten(void* buffer) const; /** Initialized the region from the buffer, returning the number of bytes actually read. */ uint32_t unflatten(const void* buffer); SkDEBUGCODE(void dump() const;) SkDEBUGCODE(void validate() const;) SkDEBUGCODE(static void UnitTest();) // expose this to allow for regression test on complex regions SkDEBUGCODE(bool debugSetRuns(const RunType runs[], int count);) private: enum { kOpCount = kReplace_Op + 1 }; enum { kRectRegionRuns = 6 // need to store a region of a rect [T B L R S S] }; friend class android::Region; // needed for marshalling efficiently void allocateRuns(int count); // allocate space for count runs struct RunHead; SkIRect fBounds; RunHead* fRunHead; void freeRuns(); const RunType* getRuns(RunType tmpStorage[], int* count) const; bool setRuns(RunType runs[], int count); int count_runtype_values(int* itop, int* ibot) const; static void BuildRectRuns(const SkIRect& bounds, RunType runs[kRectRegionRuns]); // returns true if runs are just a rect static bool ComputeRunBounds(const RunType runs[], int count, SkIRect* bounds); friend struct RunHead; friend class Iterator; friend class Spanerator; friend class SkRgnBuilder; friend class SkFlatRegion; }; #endif