/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DDLPromiseImageHelper.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "SkCachedData.h" #include "SkDeferredDisplayListRecorder.h" #include "SkImage_Base.h" #include "SkYUVAIndex.h" #include "SkYUVSizeInfo.h" DDLPromiseImageHelper::PromiseImageCallbackContext::~PromiseImageCallbackContext() { GrGpu* gpu = fContext->contextPriv().getGpu(); if (fBackendTexture.isValid()) { gpu->deleteTestingOnlyBackendTexture(fBackendTexture); } } const GrCaps* DDLPromiseImageHelper::PromiseImageCallbackContext::caps() const { return fContext->contextPriv().caps(); } /////////////////////////////////////////////////////////////////////////////////////////////////// DDLPromiseImageHelper::~DDLPromiseImageHelper() {} sk_sp DDLPromiseImageHelper::deflateSKP(const SkPicture* inputPicture) { SkSerialProcs procs; procs.fImageCtx = this; procs.fImageProc = [](SkImage* image, void* ctx) -> sk_sp { auto helper = static_cast(ctx); int id = helper->findOrDefineImage(image); if (id >= 0) { SkASSERT(helper->isValidID(id)); return SkData::MakeWithCopy(&id, sizeof(id)); } return nullptr; }; return inputPicture->serialize(&procs); } void DDLPromiseImageHelper::uploadAllToGPU(GrContext* context) { GrGpu* gpu = context->contextPriv().getGpu(); SkASSERT(gpu); for (int i = 0; i < fImageInfo.count(); ++i) { const PromiseImageInfo& info = fImageInfo[i]; // DDL TODO: how can we tell if we need mipmapping! if (info.isYUV()) { for (int j = 0; j < 3; ++j) { const SkPixmap& yuvPixmap = info.yuvPixmap(j); sk_sp callbackContext( new PromiseImageCallbackContext(context)); callbackContext->setBackendTexture(gpu->createTestingOnlyBackendTexture( yuvPixmap.addr(), yuvPixmap.width(), yuvPixmap.height(), yuvPixmap.colorType(), false, GrMipMapped::kNo, yuvPixmap.rowBytes())); SkAssertResult(callbackContext->backendTexture().isValid()); fImageInfo[i].setCallbackContext(j, std::move(callbackContext)); } } else { sk_sp callbackContext( new PromiseImageCallbackContext(context)); const SkBitmap& bm = info.normalBitmap(); callbackContext->setBackendTexture(gpu->createTestingOnlyBackendTexture( bm.getPixels(), bm.width(), bm.height(), bm.colorType(), false, GrMipMapped::kNo, bm.rowBytes())); // The GMs sometimes request too large an image //SkAssertResult(callbackContext->backendTexture().isValid()); fImageInfo[i].setCallbackContext(0, std::move(callbackContext)); } } } sk_sp DDLPromiseImageHelper::reinflateSKP( SkDeferredDisplayListRecorder* recorder, SkData* compressedPictureData, SkTArray>* promiseImages) const { PerRecorderContext perRecorderContext { recorder, this, promiseImages }; SkDeserialProcs procs; procs.fImageCtx = (void*) &perRecorderContext; procs.fImageProc = PromiseImageCreator; return SkPicture::MakeFromData(compressedPictureData, &procs); } // This generates promise images to replace the indices in the compressed picture. This // reconstitution is performed separately in each thread so we end up with multiple // promise images referring to the same GrBackendTexture. sk_sp DDLPromiseImageHelper::PromiseImageCreator(const void* rawData, size_t length, void* ctxIn) { PerRecorderContext* perRecorderContext = static_cast(ctxIn); const DDLPromiseImageHelper* helper = perRecorderContext->fHelper; SkDeferredDisplayListRecorder* recorder = perRecorderContext->fRecorder; SkASSERT(length == sizeof(int)); const int* indexPtr = static_cast(rawData); SkASSERT(helper->isValidID(*indexPtr)); const DDLPromiseImageHelper::PromiseImageInfo& curImage = helper->getInfo(*indexPtr); if (!curImage.backendTexture(0).isValid()) { SkASSERT(!curImage.isYUV()); // We weren't able to make a backend texture for this SkImage. In this case we create // a separate bitmap-backed image for each thread. SkASSERT(curImage.normalBitmap().isImmutable()); return SkImage::MakeFromBitmap(curImage.normalBitmap()); } SkASSERT(curImage.index() == *indexPtr); const GrCaps* caps = curImage.caps(); sk_sp image; if (curImage.isYUV()) { GrBackendFormat backendFormats[4]; void* contexts[4] = { nullptr, nullptr, nullptr, nullptr }; for (int i = 0; i < 3; ++i) { const GrBackendTexture& backendTex = curImage.backendTexture(i); backendFormats[i] = caps->createFormatFromBackendTexture(backendTex); contexts[i] = curImage.refCallbackContext(i).release(); } SkYUVAIndex yuvaIndices[4] = { SkYUVAIndex{0, SkColorChannel::kA}, SkYUVAIndex{1, SkColorChannel::kA}, SkYUVAIndex{2, SkColorChannel::kA}, SkYUVAIndex{-1, SkColorChannel::kA} }; int tempWidth = curImage.backendTexture(0).width(); int tempHeight = curImage.backendTexture(0).height(); image = recorder->makeYUVAPromiseTexture(curImage.yuvColorSpace(), backendFormats, yuvaIndices, tempWidth, //curImage.overallWidth(), tempHeight, //curImage.overallHeight(), GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, curImage.refOverallColorSpace(), DDLPromiseImageHelper::PromiseImageFulfillProc, DDLPromiseImageHelper::PromiseImageReleaseProc, DDLPromiseImageHelper::PromiseImageDoneProc, contexts); } else { const GrBackendTexture& backendTex = curImage.backendTexture(0); GrBackendFormat backendFormat = caps->createFormatFromBackendTexture(backendTex); // Each DDL recorder gets its own ref on the promise callback context for the // promise images it creates. // DDL TODO: sort out mipmapping image = recorder->makePromiseTexture(backendFormat, curImage.overallWidth(), curImage.overallHeight(), GrMipMapped::kNo, GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, curImage.overallColorType(), curImage.overallAlphaType(), curImage.refOverallColorSpace(), DDLPromiseImageHelper::PromiseImageFulfillProc, DDLPromiseImageHelper::PromiseImageReleaseProc, DDLPromiseImageHelper::PromiseImageDoneProc, (void*) curImage.refCallbackContext(0).release()); } perRecorderContext->fPromiseImages->push_back(image); SkASSERT(image); return image; } int DDLPromiseImageHelper::findImage(SkImage* image) const { for (int i = 0; i < fImageInfo.count(); ++i) { if (fImageInfo[i].originalUniqueID() == image->uniqueID()) { // trying to dedup here SkASSERT(fImageInfo[i].index() == i); SkASSERT(this->isValidID(i) && this->isValidID(fImageInfo[i].index())); return i; } } return -1; } int DDLPromiseImageHelper::addImage(SkImage* image) { SkImage_Base* ib = as_IB(image); SkImageInfo overallII = SkImageInfo::Make(image->width(), image->height(), image->colorType(), image->alphaType(), image->refColorSpace()); PromiseImageInfo& newImageInfo = fImageInfo.emplace_back(fImageInfo.count(), image->uniqueID(), overallII); SkYUVSizeInfo yuvSizeInfo; SkYUVColorSpace yuvColorSpace; const void* planes[3]; sk_sp yuvData = ib->getPlanes(&yuvSizeInfo, &yuvColorSpace, planes); if (yuvData) { newImageInfo.setYUVData(std::move(yuvData), yuvColorSpace); for (int i = 0; i < 3; ++i) { SkImageInfo planeII = SkImageInfo::MakeA8(yuvSizeInfo.fSizes[i].fWidth, yuvSizeInfo.fSizes[i].fHeight); newImageInfo.addYUVPlane(i, planeII, planes[i], yuvSizeInfo.fWidthBytes[i]); } } else { sk_sp rasterImage = image->makeRasterImage(); // force decoding of lazy images SkBitmap tmp; tmp.allocPixels(overallII); if (!rasterImage->readPixels(tmp.pixmap(), 0, 0)) { return -1; } tmp.setImmutable(); newImageInfo.setNormalBitmap(tmp); } // In either case newImageInfo's PromiseImageCallbackContext is filled in by uploadAllToGPU return fImageInfo.count()-1; } int DDLPromiseImageHelper::findOrDefineImage(SkImage* image) { int preExistingID = this->findImage(image); if (preExistingID >= 0) { SkASSERT(this->isValidID(preExistingID)); return preExistingID; } int newID = this->addImage(image); SkASSERT(this->isValidID(newID)); return newID; }