#include "DMSrcSink.h" #include "SamplePipeControllers.h" #include "SkCommonFlags.h" #include "SkDocument.h" #include "SkMultiPictureDraw.h" #include "SkOSFile.h" #include "SkPictureData.h" #include "SkPictureRecorder.h" #include "SkRandom.h" #include "SkStream.h" namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { SkAutoTDelete gm(fFactory(NULL)); canvas->concat(gm->getInitialTransform()); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getISize(); } Name GMSrc::name() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getName(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageSrc::ImageSrc(SkString path, int subsets) : fPath(path), fSubsets(subsets) {} Error ImageSrc::draw(SkCanvas* canvas) const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } if (fSubsets == 0) { // Decode the full image. SkBitmap bitmap; if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap)) { return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); } encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it. canvas->drawBitmap(bitmap, 0,0); return ""; } // Decode random subsets. This is a little involved. SkAutoTDelete stream(new SkMemoryStream(encoded)); SkAutoTDelete decoder(SkImageDecoder::Factory(stream.get())); if (!decoder) { return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str()); } stream->rewind(); int w,h; if (!decoder->buildTileIndex(stream.detach(), &w, &h) || w*h == 1) { return ""; // Not an error. Subset decoding is not always supported. } SkRandom rand; for (int i = 0; i < fSubsets; i++) { SkIRect rect; do { rect.fLeft = rand.nextULessThan(w); rect.fTop = rand.nextULessThan(h); rect.fRight = rand.nextULessThan(w); rect.fBottom = rand.nextULessThan(h); rect.sort(); } while (rect.isEmpty()); SkBitmap subset; if (!decoder->decodeSubset(&subset, rect, kUnknown_SkColorType/*use best fit*/)) { return SkStringPrintf("Could not decode subset %d.\n", i); } canvas->drawBitmap(subset, SkIntToScalar(rect.fLeft), SkIntToScalar(rect.fTop)); } return ""; } SkISize ImageSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkBitmap bitmap; if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, kUnknown_SkColorType, SkImageDecoder::kDecodeBounds_Mode)) { return SkISize::Make(0,0); } return bitmap.dimensions(); } Name ImageSrc::name() const { Name name = SkOSPath::Basename(fPath.c_str()); if (fSubsets > 0) { name.appendf("-%d-subsets", fSubsets); } return name; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSrc::SKPSrc(SkString path) : fPath(path) {} Error SKPSrc::draw(SkCanvas* canvas) const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTUnref pic(SkPicture::CreateFromStream(stream)); if (!pic) { return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); } stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it. canvas->drawPicture(pic); return ""; } SkISize SKPSrc::size() const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); SkPictInfo info; if (!stream || !SkPicture::InternalOnly_StreamIsSKP(stream, &info)) { return SkISize::Make(0,0); } return info.fCullRect.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize limit_raster_dimensions(const SkISize& size) { // This fits within a typical maximum texture, and puts a reasonable 16MB cap on raster bitmaps. return SkISize::Make(SkTMin(2048, size.width()), SkTMin(2048, size.height())); } GPUSink::GPUSink(GrContextFactory::GLContextType ct, GrGLStandard api, int samples, bool dfText, bool threaded) : fContextType(ct) , fGpuAPI(api) , fSampleCount(samples) , fUseDFText(dfText) , fThreaded(threaded) {} int GPUSink::enclave() const { return fThreaded ? kAnyThread_Enclave : kGPU_Enclave; } Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*) const { GrContextFactory factory; const SkISize size = limit_raster_dimensions(src.size()); const SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); SkAutoTUnref surface( NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText)); if (!surface) { return "Could not create a surface."; } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); dst->allocPixels(info); canvas->readPixels(dst, 0,0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ PDFSink::PDFSink() {} Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst) const { SkSize size; size = src.size(); SkAutoTUnref doc(SkDocument::CreatePDF(dst)); SkCanvas* canvas = doc->beginPage(size.width(), size.height()); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); doc->endPage(); doc->close(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); pic->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*) const { const SkISize size = limit_raster_dimensions(src.size()); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType)); dst->eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const { // We turn our arguments into a Src, then draw that Src into our Sink to fill bitmap or stream. struct ProxySrc : public Src { const Src& fSrc; SkMatrix fMatrix; ProxySrc(const Src& src, SkMatrix matrix) : fSrc(src), fMatrix(matrix) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { canvas->concat(fMatrix); return fSrc.draw(canvas); } SkISize size() const SK_OVERRIDE { return fSrc.size(); } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(src, fMatrix); return fSink->draw(proxy, bitmap, stream); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaPipe::ViaPipe(Sink* sink) : fSink(sink) {} Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const { // We turn ourselves into another Src that draws our argument into bitmap/stream via pipe. struct ProxySrc : public Src { const Src& fSrc; ProxySrc(const Src& src) : fSrc(src) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { SkISize size = this->size(); PipeController controller(canvas, &SkImageDecoder::DecodeMemory); SkGPipeWriter pipe; const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags. return fSrc.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height())); } SkISize size() const SK_OVERRIDE { return fSrc.size(); } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(src); return fSink->draw(proxy, bitmap, stream); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaSerialization::ViaSerialization(Sink* sink) : fSink(sink) {} Error ViaSerialization::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const { // Record our Src into a picture. SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Serialize it and then deserialize it. SkDynamicMemoryWStream wStream; pic->serialize(&wStream); SkAutoTDelete rStream(wStream.detachAsStream()); SkAutoTUnref deserialized(SkPicture::CreateFromStream(rStream)); // Turn that deserialized picture into a Src, draw it into our Sink to fill bitmap or stream. struct ProxySrc : public Src { const SkPicture* fPic; const SkISize fSize; ProxySrc(const SkPicture* pic, SkISize size) : fPic(pic), fSize(size) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { canvas->drawPicture(fPic); return ""; } SkISize size() const SK_OVERRIDE { return fSize; } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(deserialized, src.size()); return fSink->draw(proxy, bitmap, stream); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : fW(w) , fH(h) , fFactory(factory) , fSink(sink) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const { // Record our Src into a picture. SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height(), fFactory.get())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Turn that picture into a Src that draws into our Sink via tiles + MPD. struct ProxySrc : public Src { const int fW, fH; const SkPicture* fPic; const SkISize fSize; ProxySrc(int w, int h, const SkPicture* pic, SkISize size) : fW(w), fH(h), fPic(pic), fSize(size) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { const int xTiles = (fSize.width() + fW - 1) / fW, yTiles = (fSize.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTDArray surfaces; surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. SkSurface* s = canvas->newSurface(info); if (!s) { s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. } surfaces.push(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, fPic); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { SkAutoTUnref image(surfaces[i+xTiles*j]->newImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } surfaces.unrefAll(); return ""; } SkISize size() const SK_OVERRIDE { return fSize; } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(fW, fH, pic, src.size()); return fSink->draw(proxy, bitmap, stream); } } // namespace DM