/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkMatrix.h" #include "include/core/SkRRect.h" #include "include/pathops/SkPathOps.h" #include "include/utils/SkRandom.h" #include "src/core/SkPointPriv.h" #include "src/core/SkRRectPriv.h" #include "tests/Test.h" static void test_tricky_radii(skiatest::Reporter* reporter) { { // crbug.com/458522 SkRRect rr; const SkRect bounds = { 3709, 3709, 3709 + 7402, 3709 + 29825 }; const SkScalar rad = 12814; const SkVector vec[] = { { rad, rad }, { 0, rad }, { rad, rad }, { 0, rad } }; rr.setRectRadii(bounds, vec); } { // crbug.com//463920 SkRect r = SkRect::MakeLTRB(0, 0, 1009, 33554432.0); SkVector radii[4] = { { 13.0f, 8.0f }, { 170.0f, 2.0 }, { 256.0f, 33554432.0 }, { 110.0f, 5.0f } }; SkRRect rr; rr.setRectRadii(r, radii); REPORTER_ASSERT(reporter, (double) rr.radii(SkRRect::kUpperRight_Corner).fY + (double) rr.radii(SkRRect::kLowerRight_Corner).fY <= rr.height()); } } static void test_empty_crbug_458524(skiatest::Reporter* reporter) { SkRRect rr; const SkRect bounds = { 3709, 3709, 3709 + 7402, 3709 + 29825 }; const SkScalar rad = 40; rr.setRectXY(bounds, rad, rad); SkRRect other; SkMatrix matrix; matrix.setScale(0, 1); rr.transform(matrix, &other); REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == other.getType()); } // Test that all the SkRRect entry points correctly handle un-sorted and // zero-sized input rects static void test_empty(skiatest::Reporter* reporter) { static const SkRect oooRects[] = { // out of order { 100, 0, 0, 100 }, // ooo horizontal { 0, 100, 100, 0 }, // ooo vertical { 100, 100, 0, 0 }, // ooo both }; static const SkRect emptyRects[] = { { 100, 100, 100, 200 }, // empty horizontal { 100, 100, 200, 100 }, // empty vertical { 100, 100, 100, 100 }, // empty both { 0, 0, 0, 0 } // setEmpty-empty }; static const SkVector radii[4] = { { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 } }; SkRRect r; for (size_t i = 0; i < SK_ARRAY_COUNT(oooRects); ++i) { r.setRect(oooRects[i]); REPORTER_ASSERT(reporter, !r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == oooRects[i].makeSorted()); r.setOval(oooRects[i]); REPORTER_ASSERT(reporter, !r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == oooRects[i].makeSorted()); r.setRectXY(oooRects[i], 1, 2); REPORTER_ASSERT(reporter, !r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == oooRects[i].makeSorted()); r.setNinePatch(oooRects[i], 0, 1, 2, 3); REPORTER_ASSERT(reporter, !r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == oooRects[i].makeSorted()); r.setRectRadii(oooRects[i], radii); REPORTER_ASSERT(reporter, !r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == oooRects[i].makeSorted()); } for (size_t i = 0; i < SK_ARRAY_COUNT(emptyRects); ++i) { r.setRect(emptyRects[i]); REPORTER_ASSERT(reporter, r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == emptyRects[i]); r.setOval(emptyRects[i]); REPORTER_ASSERT(reporter, r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == emptyRects[i]); r.setRectXY(emptyRects[i], 1, 2); REPORTER_ASSERT(reporter, r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == emptyRects[i]); r.setNinePatch(emptyRects[i], 0, 1, 2, 3); REPORTER_ASSERT(reporter, r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == emptyRects[i]); r.setRectRadii(emptyRects[i], radii); REPORTER_ASSERT(reporter, r.isEmpty()); REPORTER_ASSERT(reporter, r.rect() == emptyRects[i]); } r.setRect({SK_ScalarNaN, 10, 10, 20}); REPORTER_ASSERT(reporter, r == SkRRect::MakeEmpty()); r.setRect({0, 10, 10, SK_ScalarInfinity}); REPORTER_ASSERT(reporter, r == SkRRect::MakeEmpty()); } static const SkScalar kWidth = 100.0f; static const SkScalar kHeight = 100.0f; static void test_inset(skiatest::Reporter* reporter) { SkRRect rr, rr2; SkRect r = { 0, 0, 100, 100 }; rr.setRect(r); rr.inset(-20, -20, &rr2); REPORTER_ASSERT(reporter, rr2.isRect()); rr.inset(20, 20, &rr2); REPORTER_ASSERT(reporter, rr2.isRect()); rr.inset(r.width()/2, r.height()/2, &rr2); REPORTER_ASSERT(reporter, rr2.isEmpty()); rr.setRectXY(r, 20, 20); rr.inset(19, 19, &rr2); REPORTER_ASSERT(reporter, rr2.isSimple()); rr.inset(20, 20, &rr2); REPORTER_ASSERT(reporter, rr2.isRect()); } static void test_9patch_rrect(skiatest::Reporter* reporter, const SkRect& rect, SkScalar l, SkScalar t, SkScalar r, SkScalar b, bool checkRadii) { SkRRect rr; rr.setNinePatch(rect, l, t, r, b); REPORTER_ASSERT(reporter, SkRRect::kNinePatch_Type == rr.type()); REPORTER_ASSERT(reporter, rr.rect() == rect); if (checkRadii) { // This test doesn't hold if the radii will be rescaled by SkRRect SkRect ninePatchRadii = { l, t, r, b }; SkPoint rquad[4]; ninePatchRadii.toQuad(rquad); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, rquad[i] == rr.radii((SkRRect::Corner) i)); } } SkRRect rr2; // construct the same RR using the most general set function SkVector radii[4] = { { l, t }, { r, t }, { r, b }, { l, b } }; rr2.setRectRadii(rect, radii); REPORTER_ASSERT(reporter, rr2 == rr && rr2.getType() == rr.getType()); } // Test out the basic API entry points static void test_round_rect_basic(skiatest::Reporter* reporter) { // Test out initialization methods SkPoint zeroPt = { 0, 0 }; SkRRect empty; empty.setEmpty(); REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type()); REPORTER_ASSERT(reporter, empty.rect().isEmpty()); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i)); } //---- SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight); SkRRect rr1; rr1.setRect(rect); REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type()); REPORTER_ASSERT(reporter, rr1.rect() == rect); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i)); } SkRRect rr1_2; // construct the same RR using the most general set function SkVector rr1_2_radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }; rr1_2.setRectRadii(rect, rr1_2_radii); REPORTER_ASSERT(reporter, rr1_2 == rr1 && rr1_2.getType() == rr1.getType()); SkRRect rr1_3; // construct the same RR using the nine patch set function rr1_3.setNinePatch(rect, 0, 0, 0, 0); REPORTER_ASSERT(reporter, rr1_3 == rr1 && rr1_3.getType() == rr1.getType()); //---- SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) }; SkRRect rr2; rr2.setOval(rect); REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type()); REPORTER_ASSERT(reporter, rr2.rect() == rect); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, SkPointPriv::EqualsWithinTolerance(rr2.radii((SkRRect::Corner) i), halfPoint)); } SkRRect rr2_2; // construct the same RR using the most general set function SkVector rr2_2_radii[4] = { { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY } }; rr2_2.setRectRadii(rect, rr2_2_radii); REPORTER_ASSERT(reporter, rr2_2 == rr2 && rr2_2.getType() == rr2.getType()); SkRRect rr2_3; // construct the same RR using the nine patch set function rr2_3.setNinePatch(rect, halfPoint.fX, halfPoint.fY, halfPoint.fX, halfPoint.fY); REPORTER_ASSERT(reporter, rr2_3 == rr2 && rr2_3.getType() == rr2.getType()); //---- SkPoint p = { 5, 5 }; SkRRect rr3; rr3.setRectXY(rect, p.fX, p.fY); REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type()); REPORTER_ASSERT(reporter, rr3.rect() == rect); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i)); } SkRRect rr3_2; // construct the same RR using the most general set function SkVector rr3_2_radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } }; rr3_2.setRectRadii(rect, rr3_2_radii); REPORTER_ASSERT(reporter, rr3_2 == rr3 && rr3_2.getType() == rr3.getType()); SkRRect rr3_3; // construct the same RR using the nine patch set function rr3_3.setNinePatch(rect, 5, 5, 5, 5); REPORTER_ASSERT(reporter, rr3_3 == rr3 && rr3_3.getType() == rr3.getType()); //---- test_9patch_rrect(reporter, rect, 10, 9, 8, 7, true); { // Test out the rrect from skia:3466 SkRect rect2 = SkRect::MakeLTRB(0.358211994f, 0.755430222f, 0.872866154f, 0.806214333f); test_9patch_rrect(reporter, rect2, 0.926942348f, 0.642850280f, 0.529063463f, 0.587844372f, false); } //---- SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } }; SkRRect rr5; rr5.setRectRadii(rect, radii2); REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type()); REPORTER_ASSERT(reporter, rr5.rect() == rect); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i)); } // Test out == & != REPORTER_ASSERT(reporter, empty != rr3); REPORTER_ASSERT(reporter, rr3 != rr5); } // Test out the cases when the RR degenerates to a rect static void test_round_rect_rects(skiatest::Reporter* reporter) { SkRect r; //---- SkRRect empty; empty.setEmpty(); REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type()); r = empty.rect(); REPORTER_ASSERT(reporter, 0 == r.fLeft && 0 == r.fTop && 0 == r.fRight && 0 == r.fBottom); //---- SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight); SkRRect rr1; rr1.setRectXY(rect, 0, 0); REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type()); r = rr1.rect(); REPORTER_ASSERT(reporter, rect == r); //---- SkPoint radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }; SkRRect rr2; rr2.setRectRadii(rect, radii); REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type()); r = rr2.rect(); REPORTER_ASSERT(reporter, rect == r); //---- SkPoint radii2[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } }; SkRRect rr3; rr3.setRectRadii(rect, radii2); REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr3.type()); } // Test out the cases when the RR degenerates to an oval static void test_round_rect_ovals(skiatest::Reporter* reporter) { //---- SkRect oval; SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight); SkRRect rr1; rr1.setRectXY(rect, SkScalarHalf(kWidth), SkScalarHalf(kHeight)); REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr1.type()); oval = rr1.rect(); REPORTER_ASSERT(reporter, oval == rect); } // Test out the non-degenerate RR cases static void test_round_rect_general(skiatest::Reporter* reporter) { //---- SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight); SkRRect rr1; rr1.setRectXY(rect, 20, 20); REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr1.type()); //---- SkPoint radii[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } }; SkRRect rr2; rr2.setRectRadii(rect, radii); REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr2.type()); } // Test out questionable-parameter handling static void test_round_rect_iffy_parameters(skiatest::Reporter* reporter) { // When the radii exceed the base rect they are proportionally scaled down // to fit SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight); SkPoint radii[4] = { { 50, 100 }, { 100, 50 }, { 50, 100 }, { 100, 50 } }; SkRRect rr1; rr1.setRectRadii(rect, radii); REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr1.type()); const SkPoint& p = rr1.radii(SkRRect::kUpperLeft_Corner); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(p.fX, 33.33333f)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(p.fY, 66.66666f)); // Negative radii should be capped at zero SkRRect rr2; rr2.setRectXY(rect, -10, -20); REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type()); const SkPoint& p2 = rr2.radii(SkRRect::kUpperLeft_Corner); REPORTER_ASSERT(reporter, 0.0f == p2.fX); REPORTER_ASSERT(reporter, 0.0f == p2.fY); } // Move a small box from the start position by (stepX, stepY) 'numSteps' times // testing for containment in 'rr' at each step. static void test_direction(skiatest::Reporter* reporter, const SkRRect &rr, SkScalar initX, int stepX, SkScalar initY, int stepY, int numSteps, const bool* contains) { SkScalar x = initX, y = initY; for (int i = 0; i < numSteps; ++i) { SkRect test = SkRect::MakeXYWH(x, y, stepX ? SkIntToScalar(stepX) : SK_Scalar1, stepY ? SkIntToScalar(stepY) : SK_Scalar1); test.sort(); REPORTER_ASSERT(reporter, contains[i] == rr.contains(test)); x += stepX; y += stepY; } } // Exercise the RR's contains rect method static void test_round_rect_contains_rect(skiatest::Reporter* reporter) { static const int kNumRRects = 4; static const SkVector gRadii[kNumRRects][4] = { { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, // rect { { 20, 20 }, { 20, 20 }, { 20, 20 }, { 20, 20 } }, // circle { { 10, 10 }, { 10, 10 }, { 10, 10 }, { 10, 10 } }, // simple { { 0, 0 }, { 20, 20 }, { 10, 10 }, { 30, 30 } } // complex }; SkRRect rrects[kNumRRects]; for (int i = 0; i < kNumRRects; ++i) { rrects[i].setRectRadii(SkRect::MakeWH(40, 40), gRadii[i]); } // First test easy outs - boxes that are obviously out on // each corner and edge static const SkRect easyOuts[] = { { -5, -5, 5, 5 }, // NW { 15, -5, 20, 5 }, // N { 35, -5, 45, 5 }, // NE { 35, 15, 45, 20 }, // E { 35, 45, 35, 45 }, // SE { 15, 35, 20, 45 }, // S { -5, 35, 5, 45 }, // SW { -5, 15, 5, 20 } // W }; for (int i = 0; i < kNumRRects; ++i) { for (size_t j = 0; j < SK_ARRAY_COUNT(easyOuts); ++j) { REPORTER_ASSERT(reporter, !rrects[i].contains(easyOuts[j])); } } // Now test non-trivial containment. For each compass // point walk a 1x1 rect in from the edge of the bounding // rect static const int kNumSteps = 15; bool answers[kNumRRects][8][kNumSteps] = { // all the test rects are inside the degenerate rrect { // rect { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, }, // for the circle we expect 6 blocks to be out on the // corners (then the rest in) and only the first block // out on the vertical and horizontal axes (then // the rest in) { // circle { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, }, // for the simple round rect we expect 3 out on // the corners (then the rest in) and no blocks out // on the vertical and horizontal axes { // simple RR { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, }, // for the complex case the answer is different for each direction { // complex RR // all in for NW (rect) corner (same as rect case) { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // only first block out for N (same as circle case) { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // first 6 blocks out for NE (same as circle case) { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // only first block out for E (same as circle case) { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // first 3 blocks out for SE (same as simple case) { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // first two blocks out for S { 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // first 9 blocks out for SW { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 }, // first two blocks out for W (same as S) { 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, } }; for (int i = 0; i < kNumRRects; ++i) { test_direction(reporter, rrects[i], 0, 1, 0, 1, kNumSteps, answers[i][0]); // NW test_direction(reporter, rrects[i], 19.5f, 0, 0, 1, kNumSteps, answers[i][1]); // N test_direction(reporter, rrects[i], 40, -1, 0, 1, kNumSteps, answers[i][2]); // NE test_direction(reporter, rrects[i], 40, -1, 19.5f, 0, kNumSteps, answers[i][3]); // E test_direction(reporter, rrects[i], 40, -1, 40, -1, kNumSteps, answers[i][4]); // SE test_direction(reporter, rrects[i], 19.5f, 0, 40, -1, kNumSteps, answers[i][5]); // S test_direction(reporter, rrects[i], 0, 1, 40, -1, kNumSteps, answers[i][6]); // SW test_direction(reporter, rrects[i], 0, 1, 19.5f, 0, kNumSteps, answers[i][7]); // W } } // Called for a matrix that should cause SkRRect::transform to fail. static void assert_transform_failure(skiatest::Reporter* reporter, const SkRRect& orig, const SkMatrix& matrix) { // The test depends on the fact that the original is not empty. SkASSERT(!orig.isEmpty()); SkRRect dst; dst.setEmpty(); const SkRRect copyOfDst = dst; const SkRRect copyOfOrig = orig; bool success = orig.transform(matrix, &dst); // This transform should fail. REPORTER_ASSERT(reporter, !success); // Since the transform failed, dst should be unchanged. REPORTER_ASSERT(reporter, copyOfDst == dst); // original should not be modified. REPORTER_ASSERT(reporter, copyOfOrig == orig); REPORTER_ASSERT(reporter, orig != dst); } #define GET_RADII \ const SkVector& origUL = orig.radii(SkRRect::kUpperLeft_Corner); \ const SkVector& origUR = orig.radii(SkRRect::kUpperRight_Corner); \ const SkVector& origLR = orig.radii(SkRRect::kLowerRight_Corner); \ const SkVector& origLL = orig.radii(SkRRect::kLowerLeft_Corner); \ const SkVector& dstUL = dst.radii(SkRRect::kUpperLeft_Corner); \ const SkVector& dstUR = dst.radii(SkRRect::kUpperRight_Corner); \ const SkVector& dstLR = dst.radii(SkRRect::kLowerRight_Corner); \ const SkVector& dstLL = dst.radii(SkRRect::kLowerLeft_Corner) // Called to test various transforms on a single SkRRect. static void test_transform_helper(skiatest::Reporter* reporter, const SkRRect& orig) { SkRRect dst; dst.setEmpty(); // The identity matrix will duplicate the rrect. bool success = orig.transform(SkMatrix::I(), &dst); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, orig == dst); // Skew and Perspective make transform fail. SkMatrix matrix; matrix.reset(); matrix.setSkewX(SkIntToScalar(2)); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setSkewY(SkIntToScalar(3)); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setPerspX(4); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setPerspY(5); assert_transform_failure(reporter, orig, matrix); // Rotation fails. matrix.reset(); matrix.setRotate(SkIntToScalar(37)); assert_transform_failure(reporter, orig, matrix); // Translate will keep the rect moved, but otherwise the same. matrix.reset(); SkScalar translateX = SkIntToScalar(32); SkScalar translateY = SkIntToScalar(15); matrix.setTranslateX(translateX); matrix.setTranslateY(translateY); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, orig.radii((SkRRect::Corner) i) == dst.radii((SkRRect::Corner) i)); } REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); REPORTER_ASSERT(reporter, dst.rect().left() == orig.rect().left() + translateX); REPORTER_ASSERT(reporter, dst.rect().top() == orig.rect().top() + translateY); // Keeping the translation, but adding skew will make transform fail. matrix.setSkewY(SkIntToScalar(7)); assert_transform_failure(reporter, orig, matrix); // Scaling in -x will flip the round rect horizontally. matrix.reset(); matrix.setScaleX(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have swapped in x. REPORTER_ASSERT(reporter, origUL == dstUR); REPORTER_ASSERT(reporter, origUR == dstUL); REPORTER_ASSERT(reporter, origLR == dstLL); REPORTER_ASSERT(reporter, origLL == dstLR); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); // Right and left have swapped (sort of) REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left()); // Top has stayed the same. REPORTER_ASSERT(reporter, orig.rect().top() == dst.rect().top()); // Keeping the scale, but adding a persp will make transform fail. matrix.setPerspX(7); assert_transform_failure(reporter, orig, matrix); // Scaling in -y will flip the round rect vertically. matrix.reset(); matrix.setScaleY(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have swapped in y. REPORTER_ASSERT(reporter, origUL == dstLL); REPORTER_ASSERT(reporter, origUR == dstLR); REPORTER_ASSERT(reporter, origLR == dstUR); REPORTER_ASSERT(reporter, origLL == dstUL); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); // Top and bottom have swapped (sort of) REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom()); // Left has stayed the same. REPORTER_ASSERT(reporter, orig.rect().left() == dst.rect().left()); // Scaling in -x and -y will swap in both directions. matrix.reset(); matrix.setScaleY(SkIntToScalar(-1)); matrix.setScaleX(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; REPORTER_ASSERT(reporter, origUL == dstLR); REPORTER_ASSERT(reporter, origUR == dstLL); REPORTER_ASSERT(reporter, origLR == dstUL); REPORTER_ASSERT(reporter, origLL == dstUR); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom()); REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left()); // Scale in both directions. SkScalar xScale = SkIntToScalar(3); SkScalar yScale = 3.2f; matrix.reset(); matrix.setScaleX(xScale); matrix.setScaleY(yScale); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); // Radii are scaled. for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fX, orig.radii((SkRRect::Corner) i).fX * xScale)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fY, orig.radii((SkRRect::Corner) i).fY * yScale)); } REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().width(), orig.rect().width() * xScale)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().height(), orig.rect().height() * yScale)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().left(), orig.rect().left() * xScale)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().top(), orig.rect().top() * yScale)); // a-----b d-----a // | | -> | | // | | Rotate 90 | | // d-----c c-----b matrix.reset(); matrix.setRotate(SkIntToScalar(90)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have cycled clockwise and swapped their x and y axis. REPORTER_ASSERT(reporter, dstUL.x() == origLL.y()); REPORTER_ASSERT(reporter, dstUL.y() == origLL.x()); REPORTER_ASSERT(reporter, dstUR.x() == origUL.y()); REPORTER_ASSERT(reporter, dstUR.y() == origUL.x()); REPORTER_ASSERT(reporter, dstLR.x() == origUR.y()); REPORTER_ASSERT(reporter, dstLR.y() == origUR.x()); REPORTER_ASSERT(reporter, dstLL.x() == origLR.y()); REPORTER_ASSERT(reporter, dstLL.y() == origLR.x()); } // Width and height would get swapped. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().width()); // a-----b b-----a c-----b // | | -> | | -> | | // | | Flip X | | Rotate 90 | | // d-----c c-----d d-----a matrix.reset(); matrix.setRotate(SkIntToScalar(90)); matrix.postScale(SkIntToScalar(-1), SkIntToScalar(1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; REPORTER_ASSERT(reporter, dstUL.x() == origLR.y()); REPORTER_ASSERT(reporter, dstUL.y() == origLR.x()); REPORTER_ASSERT(reporter, dstUR.x() == origUR.y()); REPORTER_ASSERT(reporter, dstUR.y() == origUR.x()); REPORTER_ASSERT(reporter, dstLR.x() == origUL.y()); REPORTER_ASSERT(reporter, dstLR.y() == origUL.x()); REPORTER_ASSERT(reporter, dstLL.x() == origLL.y()); REPORTER_ASSERT(reporter, dstLL.y() == origLL.x()); } // Width and height would get swapped. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().width()); // a-----b d-----a c-----b // | | -> | | -> | | // | | Rotate 90 | | Flip Y | | // d-----c c-----b d-----a // // This is the same as Flip X and Rotate 90. matrix.reset(); matrix.setScale(SkIntToScalar(1), SkIntToScalar(-1)); matrix.postRotate(SkIntToScalar(90)); SkRRect dst2; dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b b-----c c-----b // | | -> | | -> | | // | | Rotate 270 | | Flip X | | // d-----c a-----d d-----a matrix.reset(); matrix.setScale(SkIntToScalar(-1), SkIntToScalar(1)); matrix.postRotate(SkIntToScalar(270)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b d-----c c-----b // | | -> | | -> | | // | | Flip Y | | Rotate 270 | | // d-----c a-----b d-----a matrix.reset(); matrix.setRotate(SkIntToScalar(270)); matrix.postScale(SkIntToScalar(1), SkIntToScalar(-1)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b d-----a a-----d // | | -> | | -> | | // | | Rotate 90 | | Flip X | | // d-----c c-----b b-----c matrix.reset(); matrix.setScale(SkIntToScalar(-1), SkIntToScalar(1)); matrix.postRotate(SkIntToScalar(90)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; REPORTER_ASSERT(reporter, dstUL.x() == origUL.y()); REPORTER_ASSERT(reporter, dstUL.y() == origUL.x()); REPORTER_ASSERT(reporter, dstUR.x() == origLL.y()); REPORTER_ASSERT(reporter, dstUR.y() == origLL.x()); REPORTER_ASSERT(reporter, dstLR.x() == origLR.y()); REPORTER_ASSERT(reporter, dstLR.y() == origLR.x()); REPORTER_ASSERT(reporter, dstLL.x() == origUR.y()); REPORTER_ASSERT(reporter, dstLL.y() == origUR.x()); } // Width and height would get swapped. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().width()); // a-----b d-----c a-----d // | | -> | | -> | | // | | Flip Y | | Rotate 90 | | // d-----c a-----b b-----c // This is the same as rotate 90 and flip x. matrix.reset(); matrix.setRotate(SkIntToScalar(90)); matrix.postScale(SkIntToScalar(1), SkIntToScalar(-1)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b b-----a a-----d // | | -> | | -> | | // | | Flip X | | Rotate 270 | | // d-----c c-----d b-----c matrix.reset(); matrix.setRotate(SkIntToScalar(270)); matrix.postScale(SkIntToScalar(-1), SkIntToScalar(1)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b b-----c a-----d // | | -> | | -> | | // | | Rotate 270 | | Flip Y | | // d-----c a-----d b-----c matrix.reset(); matrix.setScale(SkIntToScalar(1), SkIntToScalar(-1)); matrix.postRotate(SkIntToScalar(270)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b b-----a c-----d b-----c // | | -> | | -> | | -> | | // | | Flip X | | Flip Y | | Rotate 90 | | // d-----c c-----d b-----a a-----d // // This is the same as rotation by 270. matrix.reset(); matrix.setRotate(SkIntToScalar(90)); matrix.postScale(SkIntToScalar(-1), SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have cycled clockwise and swapped their x and y axis. REPORTER_ASSERT(reporter, dstUL.x() == origUR.y()); REPORTER_ASSERT(reporter, dstUL.y() == origUR.x()); REPORTER_ASSERT(reporter, dstUR.x() == origLR.y()); REPORTER_ASSERT(reporter, dstUR.y() == origLR.x()); REPORTER_ASSERT(reporter, dstLR.x() == origLL.y()); REPORTER_ASSERT(reporter, dstLR.y() == origLL.x()); REPORTER_ASSERT(reporter, dstLL.x() == origUL.y()); REPORTER_ASSERT(reporter, dstLL.y() == origUL.x()); } // Width and height would get swapped. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().width()); // a-----b b-----c // | | -> | | // | | Rotate 270 | | // d-----c a-----d // dst2.setEmpty(); matrix.reset(); matrix.setRotate(SkIntToScalar(270)); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, dst == dst2); // a-----b b-----a c-----d d-----a // | | -> | | -> | | -> | | // | | Flip X | | Flip Y | | Rotate 270 | | // d-----c c-----d b-----a c-----b // // This is the same as rotation by 90 degrees. matrix.reset(); matrix.setRotate(SkIntToScalar(270)); matrix.postScale(SkIntToScalar(-1), SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); matrix.reset(); matrix.setRotate(SkIntToScalar(90)); dst2.setEmpty(); success = orig.transform(matrix, &dst2); REPORTER_ASSERT(reporter, dst == dst2); } static void test_round_rect_transform(skiatest::Reporter* reporter) { SkRRect rrect; { SkRect r = { 0, 0, kWidth, kHeight }; rrect.setRectXY(r, SkIntToScalar(4), SkIntToScalar(7)); test_transform_helper(reporter, rrect); } { SkRect r = { SkIntToScalar(5), SkIntToScalar(15), SkIntToScalar(27), SkIntToScalar(34) }; SkVector radii[4] = { { 0, SkIntToScalar(1) }, { SkIntToScalar(2), SkIntToScalar(3) }, { SkIntToScalar(4), SkIntToScalar(5) }, { SkIntToScalar(6), SkIntToScalar(7) } }; rrect.setRectRadii(r, radii); test_transform_helper(reporter, rrect); } } // Test out the case where an oval already off in space is translated/scaled // further off into space - yielding numerical issues when the rect & radii // are transformed separatly // BUG=skia:2696 static void test_issue_2696(skiatest::Reporter* reporter) { SkRRect rrect; SkRect r = { 28443.8594f, 53.1428604f, 28446.7148f, 56.0000038f }; rrect.setOval(r); SkMatrix xform; xform.setAll(2.44f, 0.0f, 485411.7f, 0.0f, 2.44f, -438.7f, 0.0f, 0.0f, 1.0f); SkRRect dst; bool success = rrect.transform(xform, &dst); REPORTER_ASSERT(reporter, success); SkScalar halfWidth = SkScalarHalf(dst.width()); SkScalar halfHeight = SkScalarHalf(dst.height()); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner)i).fX, halfWidth)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner)i).fY, halfHeight)); } } void test_read_rrect(skiatest::Reporter* reporter, const SkRRect& rrect, bool shouldEqualSrc) { // It would be cleaner to call rrect.writeToMemory into a buffer. However, writeToMemory asserts // that the rrect is valid and our caller may have fiddled with the internals of rrect to make // it invalid. const void* buffer = reinterpret_cast(&rrect); SkRRect deserialized; size_t size = deserialized.readFromMemory(buffer, sizeof(SkRRect)); REPORTER_ASSERT(reporter, size == SkRRect::kSizeInMemory); REPORTER_ASSERT(reporter, deserialized.isValid()); if (shouldEqualSrc) { REPORTER_ASSERT(reporter, rrect == deserialized); } } static void test_read(skiatest::Reporter* reporter) { static const SkRect kRect = {10.f, 10.f, 20.f, 20.f}; static const SkRect kNaNRect = {10.f, 10.f, 20.f, SK_ScalarNaN}; static const SkRect kInfRect = {10.f, 10.f, SK_ScalarInfinity, 20.f}; SkRRect rrect; test_read_rrect(reporter, SkRRect::MakeEmpty(), true); test_read_rrect(reporter, SkRRect::MakeRect(kRect), true); // These get coerced to empty. test_read_rrect(reporter, SkRRect::MakeRect(kInfRect), true); test_read_rrect(reporter, SkRRect::MakeRect(kNaNRect), true); rrect.setRect(kRect); SkRect* innerRect = reinterpret_cast(&rrect); SkASSERT(*innerRect == kRect); *innerRect = kInfRect; test_read_rrect(reporter, rrect, false); *innerRect = kNaNRect; test_read_rrect(reporter, rrect, false); test_read_rrect(reporter, SkRRect::MakeOval(kRect), true); test_read_rrect(reporter, SkRRect::MakeOval(kInfRect), true); test_read_rrect(reporter, SkRRect::MakeOval(kNaNRect), true); rrect.setOval(kRect); *innerRect = kInfRect; test_read_rrect(reporter, rrect, false); *innerRect = kNaNRect; test_read_rrect(reporter, rrect, false); test_read_rrect(reporter, SkRRect::MakeRectXY(kRect, 5.f, 5.f), true); // rrect should scale down the radii to make this legal test_read_rrect(reporter, SkRRect::MakeRectXY(kRect, 5.f, 400.f), true); static const SkVector kRadii[4] = {{0.5f, 1.f}, {1.5f, 2.f}, {2.5f, 3.f}, {3.5f, 4.f}}; rrect.setRectRadii(kRect, kRadii); test_read_rrect(reporter, rrect, true); SkScalar* innerRadius = reinterpret_cast(&rrect) + 6; SkASSERT(*innerRadius == 1.5f); *innerRadius = 400.f; test_read_rrect(reporter, rrect, false); *innerRadius = SK_ScalarInfinity; test_read_rrect(reporter, rrect, false); *innerRadius = SK_ScalarNaN; test_read_rrect(reporter, rrect, false); *innerRadius = -10.f; test_read_rrect(reporter, rrect, false); } static void test_inner_bounds(skiatest::Reporter* reporter) { // Because InnerBounds() insets the computed bounds slightly to correct for numerical inaccuracy // when finding the maximum inscribed point on a curve, we use a larger epsilon for comparing // expected areas. static constexpr SkScalar kEpsilon = 0.005f; // Test that an empty rrect reports empty inner bounds REPORTER_ASSERT(reporter, SkRRectPriv::InnerBounds(SkRRect::MakeEmpty()).isEmpty()); // Test that a rect rrect reports itself as the inner bounds SkRect r = SkRect::MakeLTRB(0, 1, 2, 3); REPORTER_ASSERT(reporter, SkRRectPriv::InnerBounds(SkRRect::MakeRect(r)) == r); // Test that a circle rrect has an inner bounds area equal to 2*radius^2 float radius = 5.f; SkRect inner = SkRRectPriv::InnerBounds(SkRRect::MakeOval(SkRect::MakeWH(2.f * radius, 2.f * radius))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(inner.width() * inner.height(), 2.f * radius * radius, kEpsilon)); float width = 20.f; float height = 25.f; r = SkRect::MakeWH(width, height); // Test that a rrect with circular corners has an area equal to: float expectedArea = (2.f * radius * radius) + // area in the 4 circular corners (width-2.f*radius) * (height-2.f*radius) + // inner area excluding corners and edges SK_ScalarSqrt2 * radius * (width-2.f*radius) + // two horiz. rects between corners SK_ScalarSqrt2 * radius * (height-2.f*radius); // two vert. rects between corners inner = SkRRectPriv::InnerBounds(SkRRect::MakeRectXY(r, radius, radius)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(inner.width() * inner.height(), expectedArea, kEpsilon)); // Test that a rrect with a small y radius but large x radius selects the horizontal interior SkRRect rr = SkRRect::MakeRectXY(r, 2.f * radius, 0.1f * radius); REPORTER_ASSERT(reporter, SkRRectPriv::InnerBounds(rr) == SkRect::MakeLTRB(0.f, 0.1f * radius, width, height - 0.1f * radius)); // And vice versa with large y and small x radii rr = SkRRect::MakeRectXY(r, 0.1f * radius, 2.f * radius); REPORTER_ASSERT(reporter, SkRRectPriv::InnerBounds(rr) == SkRect::MakeLTRB(0.1f * radius, 0.f, width - 0.1f * radius, height)); // Test a variety of complex round rects produce a non-empty rect that is at least contained, // and larger than the inner area avoiding all corners. SkRandom rng; for (int i = 0; i < 1000; ++i) { float maxRadiusX = rng.nextRangeF(0.f, 40.f); float maxRadiusY = rng.nextRangeF(0.f, 40.f); float innerWidth = rng.nextRangeF(0.f, 40.f); float innerHeight = rng.nextRangeF(0.f, 40.f); SkVector radii[4] = {{rng.nextRangeF(0.f, maxRadiusX), rng.nextRangeF(0.f, maxRadiusY)}, {rng.nextRangeF(0.f, maxRadiusX), rng.nextRangeF(0.f, maxRadiusY)}, {rng.nextRangeF(0.f, maxRadiusX), rng.nextRangeF(0.f, maxRadiusY)}, {rng.nextRangeF(0.f, maxRadiusX), rng.nextRangeF(0.f, maxRadiusY)}}; float maxLeft = std::max(radii[0].fX, radii[3].fX); float maxTop = std::max(radii[0].fY, radii[1].fY); float maxRight = std::max(radii[1].fX, radii[2].fX); float maxBottom = std::max(radii[2].fY, radii[3].fY); SkRect outer = SkRect::MakeWH(maxLeft + maxRight + innerWidth, maxTop + maxBottom + innerHeight); rr.setRectRadii(outer, radii); SkRect maxInner = SkRRectPriv::InnerBounds(rr); // Test upper limit on the size of 'maxInner' REPORTER_ASSERT(reporter, outer.contains(maxInner)); REPORTER_ASSERT(reporter, rr.contains(maxInner)); // Test lower limit on the size of 'maxInner' SkRect inner = SkRect::MakeXYWH(maxLeft, maxTop, innerWidth, innerHeight); inner.inset(kEpsilon, kEpsilon); if (inner.isSorted()) { REPORTER_ASSERT(reporter, maxInner.contains(inner)); } else { // Flipped from the inset, just test two points of inner float midX = maxLeft + 0.5f * innerWidth; float midY = maxTop + 0.5f * innerHeight; REPORTER_ASSERT(reporter, maxInner.contains(midX, maxTop)); REPORTER_ASSERT(reporter, maxInner.contains(midX, maxTop + innerHeight)); REPORTER_ASSERT(reporter, maxInner.contains(maxLeft, midY)); REPORTER_ASSERT(reporter, maxInner.contains(maxLeft + innerWidth, midY)); } } } namespace { // Helper to test expected intersection, relying on the fact that all round rect intersections // will have their bounds equal to the intersection of the bounds of the input round rects, and // their corner radii will be a one of A's, B's, or rectangular. enum CornerChoice : uint8_t { kA, kB, kRect }; static void verify_success(skiatest::Reporter* reporter, const SkRRect& a, const SkRRect& b, CornerChoice tl, CornerChoice tr, CornerChoice br, CornerChoice bl) { static const SkRRect kRect = SkRRect::MakeEmpty(); // has (0,0) for all corners // Compute expected round rect intersection given bounds of A and B, and the specified // corner choices for the 4 corners. SkRect expectedBounds; SkAssertResult(expectedBounds.intersect(a.rect(), b.rect())); SkVector radii[4] = { (tl == kA ? a : (tl == kB ? b : kRect)).radii(SkRRect::kUpperLeft_Corner), (tr == kA ? a : (tr == kB ? b : kRect)).radii(SkRRect::kUpperRight_Corner), (br == kA ? a : (br == kB ? b : kRect)).radii(SkRRect::kLowerRight_Corner), (bl == kA ? a : (bl == kB ? b : kRect)).radii(SkRRect::kLowerLeft_Corner) }; SkRRect expected; expected.setRectRadii(expectedBounds, radii); SkRRect actual = SkRRectPriv::ConservativeIntersect(a, b); // Intersections are commutative so ba and ab should be the same REPORTER_ASSERT(reporter, actual == SkRRectPriv::ConservativeIntersect(b, a)); // Intersection of the result with either A or B should remain the intersection REPORTER_ASSERT(reporter, actual == SkRRectPriv::ConservativeIntersect(actual, a)); REPORTER_ASSERT(reporter, actual == SkRRectPriv::ConservativeIntersect(actual, b)); // Bounds of intersection round rect should equal intersection of bounds of a and b REPORTER_ASSERT(reporter, actual.rect() == expectedBounds); // Use PathOps to confirm that the explicit round rect is correct. SkPath aPath, bPath, expectedPath; aPath.addRRect(a); bPath.addRRect(b); SkAssertResult(Op(aPath, bPath, kIntersect_SkPathOp, &expectedPath)); // The isRRect() heuristics in SkPath are based on having called addRRect(), so a path from // path ops that is a rounded rectangle will return false. However, if test XOR expected is // empty, then we know that the shapes were the same. SkPath testPath; testPath.addRRect(actual); SkPath empty; SkAssertResult(Op(testPath, expectedPath, kXOR_SkPathOp, &empty)); REPORTER_ASSERT(reporter, empty.isEmpty()); } static void verify_failure(skiatest::Reporter* reporter, const SkRRect& a, const SkRRect& b) { SkRRect intersection = SkRRectPriv::ConservativeIntersect(a, b); // Expected the intersection to fail (no intersection or complex intersection is not // disambiguated). REPORTER_ASSERT(reporter, intersection.isEmpty()); REPORTER_ASSERT(reporter, SkRRectPriv::ConservativeIntersect(b, a).isEmpty()); } } // anonymous static void test_conservative_intersection(skiatest::Reporter* reporter) { // Helper to inline making an inset round rect auto make_inset = [](const SkRRect& r, float dx, float dy) { SkRRect i = r; i.inset(dx, dy); return i; }; // A is a wide, short round rect SkRRect a = SkRRect::MakeRectXY({0.f, 4.f, 16.f, 12.f}, 2.f, 2.f); // B is a narrow, tall round rect SkRRect b = SkRRect::MakeRectXY({4.f, 0.f, 12.f, 16.f}, 3.f, 3.f); // NOTE: As positioned by default, A and B intersect as the rectangle {4, 4, 12, 12}. // There is a 2 px buffer between the corner curves of A and the vertical edges of B, and // a 1 px buffer between the corner curves of B and the horizontal edges of A. Since the shapes // form a symmetric rounded cross, we can easily test edge and corner combinations by simply // flipping signs and/or swapping x and y offsets. // Successful intersection operations: // - for clarity these are formed by moving A around to intersect with B in different ways. // - the expected bounds of the round rect intersection is calculated automatically // in check_success, so all we have to specify are the expected corner radii // A and B intersect as a rectangle verify_success(reporter, a, b, kRect, kRect, kRect, kRect); // Move A to intersect B on a vertical edge, preserving two corners of A inside B verify_success(reporter, a.makeOffset(6.f, 0.f), b, kA, kRect, kRect, kA); verify_success(reporter, a.makeOffset(-6.f, 0.f), b, kRect, kA, kA, kRect); // Move B to intersect A on a horizontal edge, preserving two corners of B inside A verify_success(reporter, a, b.makeOffset(0.f, 6.f), kB, kB, kRect, kRect); verify_success(reporter, a, b.makeOffset(0.f, -6.f), kRect, kRect, kB, kB); // Move A to intersect B on a corner, preserving one corner of A and one of B verify_success(reporter, a.makeOffset(-7.f, -8.f), b, kB, kRect, kA, kRect); // TL of B verify_success(reporter, a.makeOffset(7.f, -8.f), b, kRect, kB, kRect, kA); // TR of B verify_success(reporter, a.makeOffset(7.f, 8.f), b, kA, kRect, kB, kRect); // BR of B verify_success(reporter, a.makeOffset(-7.f, 8.f), b, kRect, kA, kRect, kB); // BL of B // An inset is contained inside the original (note that SkRRect::inset modifies radii too) so // is returned unmodified when intersected. verify_success(reporter, a, make_inset(a, 1.f, 1.f), kB, kB, kB, kB); verify_success(reporter, make_inset(b, 2.f, 2.f), b, kA, kA, kA, kA); // Failed intersection operations: // A and B's bounds do not intersect verify_failure(reporter, a.makeOffset(32.f, 0.f), b); // A and B's bounds intersect, but corner curves do not -> no intersection verify_failure(reporter, a.makeOffset(11.5f, -11.5f), b); // A is empty -> no intersection verify_failure(reporter, SkRRect::MakeEmpty(), b); // A is contained in B, but is too close to the corner curves for the conservative // approximations to construct a valid round rect intersection. verify_failure(reporter, make_inset(b, 0.3f, 0.3f), b); // A intersects a straight edge, but not far enough for B to contain A's corners verify_failure(reporter, a.makeOffset(2.5f, 0.f), b); verify_failure(reporter, a.makeOffset(-2.5f, 0.f), b); // And vice versa for B into A verify_failure(reporter, a, b.makeOffset(0.f, 1.5f)); verify_failure(reporter, a, b.makeOffset(0.f, -1.5f)); // A intersects a straight edge and part of B's corner verify_failure(reporter, a.makeOffset(5.f, -2.f), b); verify_failure(reporter, a.makeOffset(-5.f, -2.f), b); verify_failure(reporter, a.makeOffset(5.f, 2.f), b); verify_failure(reporter, a.makeOffset(-5.f, 2.f), b); // And vice versa verify_failure(reporter, a, b.makeOffset(3.f, -5.f)); verify_failure(reporter, a, b.makeOffset(-3.f, -5.f)); verify_failure(reporter, a, b.makeOffset(3.f, 5.f)); verify_failure(reporter, a, b.makeOffset(-3.f, 5.f)); // A intersects B on a corner, but the corner curves overlap each other verify_failure(reporter, a.makeOffset(8.f, 10.f), b); verify_failure(reporter, a.makeOffset(-8.f, 10.f), b); verify_failure(reporter, a.makeOffset(8.f, -10.f), b); verify_failure(reporter, a.makeOffset(-8.f, -10.f), b); } DEF_TEST(RoundRect, reporter) { test_round_rect_basic(reporter); test_round_rect_rects(reporter); test_round_rect_ovals(reporter); test_round_rect_general(reporter); test_round_rect_iffy_parameters(reporter); test_inset(reporter); test_round_rect_contains_rect(reporter); test_round_rect_transform(reporter); test_issue_2696(reporter); test_tricky_radii(reporter); test_empty_crbug_458524(reporter); test_empty(reporter); test_read(reporter); test_inner_bounds(reporter); test_conservative_intersection(reporter); }