/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkPathPriv.h" #include "src/core/SkTSort.h" #include "src/pathops/SkPathOpsBounds.h" #include "src/pathops/SkPathOpsConic.h" #include "src/pathops/SkPathOpsCubic.h" #include "src/pathops/SkPathOpsLine.h" #include "src/pathops/SkPathOpsQuad.h" #include "src/pathops/SkPathOpsTSect.h" #include "src/pathops/SkReduceOrder.h" #include "tests/PathOpsTestCommon.h" #include <utility> static double calc_t_div(const SkDCubic& cubic, double precision, double start) { const double adjust = sqrt(3.) / 36; SkDCubic sub; const SkDCubic* cPtr; if (start == 0) { cPtr = &cubic; } else { // OPTIMIZE: special-case half-split ? sub = cubic.subDivide(start, 1); cPtr = ⊂ } const SkDCubic& c = *cPtr; double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; double dist = sqrt(dx * dx + dy * dy); double tDiv3 = precision / (adjust * dist); double t = SkDCubeRoot(tDiv3); if (start > 0) { t = start + (1 - start) * t; } return t; } static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) { double tDiv = calc_t_div(cubic, precision, 0); if (tDiv >= 1) { return true; } if (tDiv >= 0.5) { ts->push_back(0.5); return true; } return false; } static void addTs(const SkDCubic& cubic, double precision, double start, double end, SkTArray<double, true>* ts) { double tDiv = calc_t_div(cubic, precision, 0); double parts = ceil(1.0 / tDiv); for (double index = 0; index < parts; ++index) { double newT = start + (index / parts) * (end - start); if (newT > 0 && newT < 1) { ts->push_back(newT); } } } static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) { SkReduceOrder reducer; int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics); if (order < 3) { return; } double inflectT[5]; int inflections = cubic->findInflections(inflectT); SkASSERT(inflections <= 2); if (!cubic->endsAreExtremaInXOrY()) { inflections += cubic->findMaxCurvature(&inflectT[inflections]); SkASSERT(inflections <= 5); } SkTQSort<double>(inflectT, inflectT + inflections); // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its // own subroutine? while (inflections && approximately_less_than_zero(inflectT[0])) { memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); } int start = 0; int next = 1; while (next < inflections) { if (!approximately_equal(inflectT[start], inflectT[next])) { ++start; ++next; continue; } memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); } while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { --inflections; } SkDCubicPair pair; if (inflections == 1) { pair = cubic->chopAt(inflectT[0]); int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); if (orderP1 < 2) { --inflections; } else { int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); if (orderP2 < 2) { --inflections; } } } if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) { return; } if (inflections == 1) { pair = cubic->chopAt(inflectT[0]); addTs(pair.first(), precision, 0, inflectT[0], ts); addTs(pair.second(), precision, inflectT[0], 1, ts); return; } if (inflections > 1) { SkDCubic part = cubic->subDivide(0, inflectT[0]); addTs(part, precision, 0, inflectT[0], ts); int last = inflections - 1; for (int idx = 0; idx < last; ++idx) { part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]); addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); } part = cubic->subDivide(inflectT[last], 1); addTs(part, precision, inflectT[last], 1, ts); return; } addTs(*cubic, precision, 0, 1, ts); } void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) { SkTArray<double, true> ts; toQuadraticTs(&cubic, precision, &ts); if (ts.count() <= 0) { SkDQuad quad = cubic.toQuad(); quads.push_back(quad); return; } double tStart = 0; for (int i1 = 0; i1 <= ts.count(); ++i1) { const double tEnd = i1 < ts.count() ? ts[i1] : 1; SkDRect bounds; bounds.setBounds(cubic); SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); if (quad[1].fX < bounds.fLeft) { quad[1].fX = bounds.fLeft; } else if (quad[1].fX > bounds.fRight) { quad[1].fX = bounds.fRight; } if (quad[1].fY < bounds.fTop) { quad[1].fY = bounds.fTop; } else if (quad[1].fY > bounds.fBottom) { quad[1].fY = bounds.fBottom; } quads.push_back(quad); tStart = tEnd; } } void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) { quadPath->reset(); SkDCubic cubic; SkTArray<SkDQuad, true> quads; for (auto [verb, pts, w] : SkPathPriv::Iterate(cubicPath)) { switch (verb) { case SkPathVerb::kMove: quadPath->moveTo(pts[0].fX, pts[0].fY); continue; case SkPathVerb::kLine: quadPath->lineTo(pts[1].fX, pts[1].fY); break; case SkPathVerb::kQuad: quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPathVerb::kCubic: quads.reset(); cubic.set(pts); CubicToQuads(cubic, cubic.calcPrecision(), quads); for (int index = 0; index < quads.count(); ++index) { SkPoint qPts[2] = { quads[index][1].asSkPoint(), quads[index][2].asSkPoint() }; quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY); } break; case SkPathVerb::kClose: quadPath->close(); break; default: SkDEBUGFAIL("bad verb"); return; } } } void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) { simplePath->reset(); SkDCubic cubic; for (auto [verb, pts, w] : SkPathPriv::Iterate(cubicPath)) { switch (verb) { case SkPathVerb::kMove: simplePath->moveTo(pts[0].fX, pts[0].fY); continue; case SkPathVerb::kLine: simplePath->lineTo(pts[1].fX, pts[1].fY); break; case SkPathVerb::kQuad: simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPathVerb::kCubic: { cubic.set(pts); double tInflects[2]; int inflections = cubic.findInflections(tInflects); if (inflections > 1 && tInflects[0] > tInflects[1]) { using std::swap; swap(tInflects[0], tInflects[1]); } double lo = 0; for (int index = 0; index <= inflections; ++index) { double hi = index < inflections ? tInflects[index] : 1; SkDCubic part = cubic.subDivide(lo, hi); SkPoint cPts[3]; cPts[0] = part[1].asSkPoint(); cPts[1] = part[2].asSkPoint(); cPts[2] = part[3].asSkPoint(); simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY, cPts[2].fX, cPts[2].fY); lo = hi; } break; } case SkPathVerb::kClose: simplePath->close(); break; default: SkDEBUGFAIL("bad verb"); return; } } } bool ValidBounds(const SkPathOpsBounds& bounds) { if (SkScalarIsNaN(bounds.fLeft)) { return false; } if (SkScalarIsNaN(bounds.fTop)) { return false; } if (SkScalarIsNaN(bounds.fRight)) { return false; } return !SkScalarIsNaN(bounds.fBottom); } bool ValidConic(const SkDConic& conic) { for (int index = 0; index < SkDConic::kPointCount; ++index) { if (!ValidPoint(conic[index])) { return false; } } if (SkDoubleIsNaN(conic.fWeight)) { return false; } return true; } bool ValidCubic(const SkDCubic& cubic) { for (int index = 0; index < 4; ++index) { if (!ValidPoint(cubic[index])) { return false; } } return true; } bool ValidLine(const SkDLine& line) { for (int index = 0; index < 2; ++index) { if (!ValidPoint(line[index])) { return false; } } return true; } bool ValidPoint(const SkDPoint& pt) { if (SkDoubleIsNaN(pt.fX)) { return false; } return !SkDoubleIsNaN(pt.fY); } bool ValidPoints(const SkPoint* pts, int count) { for (int index = 0; index < count; ++index) { if (SkScalarIsNaN(pts[index].fX)) { return false; } if (SkScalarIsNaN(pts[index].fY)) { return false; } } return true; } bool ValidQuad(const SkDQuad& quad) { for (int index = 0; index < 3; ++index) { if (!ValidPoint(quad[index])) { return false; } } return true; } bool ValidVector(const SkDVector& v) { if (SkDoubleIsNaN(v.fX)) { return false; } return !SkDoubleIsNaN(v.fY); }