/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkRandom.h" #include "src/core/SkGeometry.h" #include "src/gpu/geometry/GrPathUtils.h" #include "tests/Test.h" static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) { return SkScalarNearlyZero((p0 - p1).cross(p2 - p1)); } static bool is_linear(const SkPoint p[4]) { return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]); } static void check_cubic_convex_180(skiatest::Reporter* r, const SkPoint p[4]) { bool areCusps = false; float inflectT[2], convex180T[2]; if (int inflectN = SkFindCubicInflections(p, inflectT)) { // The curve has inflections. findCubicConvex180Chops should return the inflection // points. int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T, &areCusps); REPORTER_ASSERT(r, inflectN == convex180N); if (!areCusps) { REPORTER_ASSERT(r, inflectN == 1 || fabsf(inflectT[0] - inflectT[1]) >= SK_ScalarNearlyZero); } for (int i = 0; i < convex180N; ++i) { REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i])); } } else { float totalRotation = SkMeasureNonInflectCubicRotation(p); int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T, &areCusps); SkPoint chops[10]; SkChopCubicAt(p, chops, convex180T, convex180N); float radsSum = 0; for (int i = 0; i <= convex180N; ++i) { float rads = SkMeasureNonInflectCubicRotation(chops + i*3); SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero); radsSum += rads; } if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) { // The curve should never chop if rotation is <180 degrees. REPORTER_ASSERT(r, convex180N == 0); } else if (!is_linear(p)) { REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation)); if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) { REPORTER_ASSERT(r, convex180N == 1); // This works because cusps take the "inflection" path above, so we don't get // non-lilnear curves that lose rotation when chopped. REPORTER_ASSERT(r, SkScalarNearlyEqual( SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI)); REPORTER_ASSERT(r, SkScalarNearlyEqual( SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI)); } REPORTER_ASSERT(r, !areCusps); } else { REPORTER_ASSERT(r, areCusps); } } } DEF_TEST(GrPathUtils_findCubicConvex180Chops, r) { // Test all combinations of corners from the square [0,0,1,1]. This covers every cubic type as // well as a wide variety of special cases for cusps, lines, loops, and inflections. for (int i = 0; i < (1 << 8); ++i) { SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1), SkPoint::Make((i>>2)&1, (i>>3)&1), SkPoint::Make((i>>4)&1, (i>>5)&1), SkPoint::Make((i>>6)&1, (i>>7)&1)}; check_cubic_convex_180(r, p); } { // This cubic has a convex-180 chop at T=1-"epsilon" static const uint32_t hexPts[] = {0x3ee0ac74, 0x3f1e061a, 0x3e0fc408, 0x3f457230, 0x3f42ac7c, 0x3f70d76c, 0x3f4e6520, 0x3f6acafa}; SkPoint p[4]; memcpy(p, hexPts, sizeof(p)); check_cubic_convex_180(r, p); } // Now test an exact quadratic. SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}}; float T[2]; REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(quad, T) == 0); // Now test that cusps and near-cusps get flagged as cusps. SkPoint cusp[4] = {{0,0}, {1,1}, {1,0}, {0,1}}; bool areCusps = false; REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 1); REPORTER_ASSERT(r, areCusps == true); // Find the height of the right side of "cusp" at which the distance between its inflection // points is kEpsilon (in parametric space). constexpr static double kEpsilon = 1.0 / (1 << 11); constexpr static double kEpsilonSquared = kEpsilon * kEpsilon; double h = (1 - kEpsilonSquared) / (3 * kEpsilonSquared + 1); double dy = (1 - h) / 2; cusp[1].fY = (float)(1 - dy); cusp[2].fY = (float)(0 + dy); REPORTER_ASSERT(r, SkFindCubicInflections(cusp, T) == 2); REPORTER_ASSERT(r, SkScalarNearlyEqual(T[1] - T[0], (float)kEpsilon, (float)kEpsilonSquared)); // Ensure two inflection points barely more than kEpsilon apart do not get flagged as cusps. cusp[1].fY = (float)(1 - 1.1 * dy); cusp[2].fY = (float)(0 + 1.1 * dy); areCusps = false; REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 2); REPORTER_ASSERT(r, areCusps == false); // Ensure two inflection points barely less than kEpsilon apart do get flagged as cusps. cusp[1].fY = (float)(1 - .9 * dy); cusp[2].fY = (float)(0 + .9 * dy); areCusps = false; REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 1); REPORTER_ASSERT(r, areCusps == true); } DEF_TEST(GrPathUtils_convertToCubic, r) { SkPoint cubic[4]; GrPathUtils::convertLineToCubic({0,0}, {3,6}, cubic); REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 1)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 4)); REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(3,6)); SkPoint quad[3] = {{0,0}, {3,3}, {6,0}}; GrPathUtils::convertQuadToCubic(quad, cubic); REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 4)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 2)); REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(6,0)); }