/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrTBlockList.h" #include "tests/Test.h" namespace { struct C { C() : fID(-1) { ++gInstCnt; } C(int id) : fID(id) { ++gInstCnt; } C(C&& c) : C(c.fID) {} C(const C& c) : C(c.fID) {} C& operator=(C&&) = default; C& operator=(const C&) = default; ~C() { --gInstCnt; } int fID; // Under the hood, GrTBlockList and GrBlockAllocator round up to max_align_t. If 'C' was // just 4 bytes, that often means the internal blocks can squeeze a few extra instances in. This // is fine, but makes predicting a little trickier, so make sure C is a bit bigger. int fPadding[4]; static int gInstCnt; }; int C::gInstCnt = 0; struct D { int fID; }; } // namespace // Checks that the allocator has the correct count, etc and that the element IDs are correct. // Then pops popCnt items and checks again. template static void check_allocator_helper(GrTBlockList* allocator, int cnt, int popCnt, skiatest::Reporter* reporter) { REPORTER_ASSERT(reporter, (0 == cnt) == allocator->empty()); REPORTER_ASSERT(reporter, cnt == allocator->count()); REPORTER_ASSERT(reporter, cnt == C::gInstCnt); int i = 0; for (const C& c : allocator->items()) { REPORTER_ASSERT(reporter, i == c.fID); REPORTER_ASSERT(reporter, allocator->item(i).fID == i); ++i; } REPORTER_ASSERT(reporter, i == cnt); if (cnt > 0) { REPORTER_ASSERT(reporter, cnt-1 == allocator->back().fID); } if (popCnt > 0) { for (int i = 0; i < popCnt; ++i) { allocator->pop_back(); } check_allocator_helper(allocator, cnt - popCnt, 0, reporter); } } template static void check_iterator_helper(GrTBlockList* allocator, const std::vector& expected, skiatest::Reporter* reporter) { const GrTBlockList* cAlloc = allocator; REPORTER_ASSERT(reporter, (size_t) allocator->count() == expected.size()); // Forward+const int i = 0; for (const C& c : cAlloc->items()) { REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); ++i; } REPORTER_ASSERT(reporter, (size_t) i == expected.size()); // Forward+non-const i = 0; for (C& c : allocator->items()) { REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); ++i; } REPORTER_ASSERT(reporter, (size_t) i == expected.size()); // Reverse+const i = (int) expected.size() - 1; for (const C& c : cAlloc->ritems()) { REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); --i; } REPORTER_ASSERT(reporter, i == -1); // Reverse+non-const i = (int) expected.size() - 1; for (C& c : allocator->ritems()) { REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); --i; } REPORTER_ASSERT(reporter, i == -1); // Also test random access for (int i = 0; i < allocator->count(); ++i) { REPORTER_ASSERT(reporter, (uintptr_t) &allocator->item(i) == (uintptr_t) expected[i]); REPORTER_ASSERT(reporter, (uintptr_t) &cAlloc->item(i) == (uintptr_t) expected[i]); } } // Adds cnt items to the allocator, tests the cnts and iterators, pops popCnt items and checks // again. Finally it resets the allocator and checks again. template static void check_allocator(GrTBlockList* allocator, int cnt, int popCnt, skiatest::Reporter* reporter) { enum ItemInitializer : int { kCopyCtor, kMoveCtor, kCopyAssign, kMoveAssign, kEmplace, }; static constexpr int kInitCount = (int) kEmplace + 1; SkASSERT(allocator); SkASSERT(allocator->empty()); std::vector items; for (int i = 0; i < cnt; ++i) { switch((ItemInitializer) (i % kInitCount)) { case kCopyCtor: allocator->push_back(C(i)); break; case kMoveCtor: allocator->push_back(std::move(C(i))); break; case kCopyAssign: allocator->push_back() = C(i); break; case kMoveAssign: allocator->push_back() = std::move(C(i)); break; case kEmplace: allocator->emplace_back(i); break; } items.push_back(&allocator->back()); } check_iterator_helper(allocator, items, reporter); check_allocator_helper(allocator, cnt, popCnt, reporter); allocator->reset(); check_iterator_helper(allocator, {}, reporter); check_allocator_helper(allocator, 0, 0, reporter); } template static void run_allocator_test(GrTBlockList* allocator, skiatest::Reporter* reporter) { check_allocator(allocator, 0, 0, reporter); check_allocator(allocator, 1, 1, reporter); check_allocator(allocator, 2, 2, reporter); check_allocator(allocator, 10, 1, reporter); check_allocator(allocator, 10, 5, reporter); check_allocator(allocator, 10, 10, reporter); check_allocator(allocator, 100, 10, reporter); } template static void run_concat_test(skiatest::Reporter* reporter, int aCount, int bCount) { GrTBlockList listA; GrTBlockList listB; for (int i = 0; i < aCount; ++i) { listA.emplace_back(i); } for (int i = 0; i < bCount; ++i) { listB.emplace_back(aCount + i); } REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount); REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount); // Concatenate B into A and verify. listA.concat(std::move(listB)); REPORTER_ASSERT(reporter, listA.count() == aCount + bCount); // GrTBlockList guarantees the moved list is empty, but clang-tidy doesn't know about it; // in practice we won't really be using moved lists so this won't pollute our main code base // with lots of warning disables. REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move) REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount); int i = 0; for (const C& item : listA.items()) { // By construction of A and B originally, the concatenated id sequence is continuous REPORTER_ASSERT(reporter, i == item.fID); i++; } REPORTER_ASSERT(reporter, i == (aCount + bCount)); } template static void run_concat_trivial_test(skiatest::Reporter* reporter, int aCount, int bCount) { static_assert(std::is_trivially_copyable::value); // This is similar to run_concat_test(), except since D is trivial we can't verify the instant // counts that are tracked via ctor/dtor. GrTBlockList listA; GrTBlockList listB; for (int i = 0; i < aCount; ++i) { listA.push_back({i}); } for (int i = 0; i < bCount; ++i) { listB.push_back({aCount + i}); } REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount); // Concatenate B into A and verify. listA.concat(std::move(listB)); REPORTER_ASSERT(reporter, listA.count() == aCount + bCount); REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move): see above int i = 0; for (const D& item : listA.items()) { // By construction of A and B originally, the concatenated id sequence is continuous REPORTER_ASSERT(reporter, i == item.fID); i++; } REPORTER_ASSERT(reporter, i == (aCount + bCount)); } template static void run_reserve_test(skiatest::Reporter* reporter) { constexpr int kItemsPerBlock = N + 4; // Make this a number > 1, even if N starting items == 1 GrTBlockList list(kItemsPerBlock); size_t initialSize = list.allocator()->totalSize(); // Should be able to add N instances of T w/o changing size from initialSize for (int i = 0; i < N; ++i) { list.push_back(C(i)); } REPORTER_ASSERT(reporter, initialSize == list.allocator()->totalSize()); // Reserve room for 2*kItemsPerBlock items list.reserve(2 * kItemsPerBlock); REPORTER_ASSERT(reporter, list.count() == N); // count shouldn't change though size_t reservedSize = list.allocator()->totalSize(); REPORTER_ASSERT(reporter, reservedSize >= initialSize + 2 * kItemsPerBlock * sizeof(C)); for (int i = 0; i < 2 * kItemsPerBlock; ++i) { list.push_back(C(i)); } REPORTER_ASSERT(reporter, reservedSize == list.allocator()->totalSize()); // Make the next block partially fully (N > 0 but < kItemsPerBlock) for (int i = 0; i < N; ++i) { list.push_back(C(i)); } // Reserve room again for 2*kItemsPerBlock, but reserve should automatically take account of the // (kItemsPerBlock-N) that are still available in the active block list.reserve(2 * kItemsPerBlock); int extraReservedCount = kItemsPerBlock + N; // Because GrTBlockList normally allocates blocks in fixed sizes, and extraReservedCount > // items-per-block, it will always use that size and not that of the growth policy. REPORTER_ASSERT(reporter, (size_t) list.allocator()->testingOnly_scratchBlockSize() >= extraReservedCount * sizeof(C)); reservedSize = list.allocator()->totalSize(); for (int i = 0; i < 2 * kItemsPerBlock; ++i) { list.push_back(C(i)); } REPORTER_ASSERT(reporter, reservedSize == list.allocator()->totalSize()); // If we reserve a count < items-per-block, it will use the fixed size from the growth policy. list.reserve(2); REPORTER_ASSERT(reporter, (size_t) list.allocator()->testingOnly_scratchBlockSize() >= kItemsPerBlock * sizeof(C)); // Ensure the reservations didn't initialize any more D's than anticipated int expectedInstanceCount = 2 * (N + 2 * kItemsPerBlock); REPORTER_ASSERT(reporter, expectedInstanceCount == C::gInstCnt); list.reset(); REPORTER_ASSERT(reporter, 0 == C::gInstCnt); } DEF_TEST(GrTBlockList, reporter) { // Test combinations of allocators with and without stack storage and with different block sizes GrTBlockList a1(1); run_allocator_test(&a1, reporter); GrTBlockList a2(2); run_allocator_test(&a2, reporter); GrTBlockList a5(5); run_allocator_test(&a5, reporter); GrTBlockList sa1; run_allocator_test(&sa1, reporter); GrTBlockList sa3; run_allocator_test(&sa3, reporter); GrTBlockList sa4; run_allocator_test(&sa4, reporter); run_reserve_test<1>(reporter); run_reserve_test<2>(reporter); run_reserve_test<3>(reporter); run_reserve_test<4>(reporter); run_reserve_test<5>(reporter); run_concat_test<1, 1>(reporter, 10, 10); run_concat_test<5, 1>(reporter, 50, 10); run_concat_test<1, 5>(reporter, 10, 50); run_concat_test<5, 5>(reporter, 100, 100); run_concat_trivial_test<1, 1>(reporter, 10, 10); run_concat_trivial_test<5, 1>(reporter, 50, 10); run_concat_trivial_test<1, 5>(reporter, 10, 50); run_concat_trivial_test<5, 5>(reporter, 100, 100); }