/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkFloatingPoint_DEFINED #define SkFloatingPoint_DEFINED #include "include/core/SkTypes.h" #include "include/private/SkFloatBits.h" #include "include/private/SkSafe_math.h" #include #include #include #include #include #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 #include #elif defined(SK_ARM_HAS_NEON) #include #endif // For _POSIX_VERSION #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) #include #endif constexpr float SK_FloatSqrt2 = 1.41421356f; constexpr float SK_FloatPI = 3.14159265f; constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; // C++98 cmath std::pow seems to be the earliest portable way to get float pow. // However, on Linux including cmath undefines isfinite. // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 static inline float sk_float_pow(float base, float exp) { return powf(base, exp); } #define sk_float_sqrt(x) sqrtf(x) #define sk_float_sin(x) sinf(x) #define sk_float_cos(x) cosf(x) #define sk_float_tan(x) tanf(x) #define sk_float_floor(x) floorf(x) #define sk_float_ceil(x) ceilf(x) #define sk_float_trunc(x) truncf(x) #ifdef SK_BUILD_FOR_MAC # define sk_float_acos(x) static_cast(acos(x)) # define sk_float_asin(x) static_cast(asin(x)) #else # define sk_float_acos(x) acosf(x) # define sk_float_asin(x) asinf(x) #endif #define sk_float_atan2(y,x) atan2f(y,x) #define sk_float_abs(x) fabsf(x) #define sk_float_copysign(x, y) copysignf(x, y) #define sk_float_mod(x,y) fmodf(x,y) #define sk_float_exp(x) expf(x) #define sk_float_log(x) logf(x) constexpr float sk_float_degrees_to_radians(float degrees) { return degrees * (SK_FloatPI / 180); } constexpr float sk_float_radians_to_degrees(float radians) { return radians * (180 / SK_FloatPI); } #define sk_float_round(x) sk_float_floor((x) + 0.5f) // can't find log2f on android, but maybe that just a tool bug? #ifdef SK_BUILD_FOR_ANDROID static inline float sk_float_log2(float x) { const double inv_ln_2 = 1.44269504088896; return (float)(log(x) * inv_ln_2); } #else #define sk_float_log2(x) log2f(x) #endif static inline bool sk_float_isfinite(float x) { return SkFloatBits_IsFinite(SkFloat2Bits(x)); } static inline bool sk_floats_are_finite(float a, float b) { return sk_float_isfinite(a) && sk_float_isfinite(b); } static inline bool sk_floats_are_finite(const float array[], int count) { float prod = 0; for (int i = 0; i < count; ++i) { prod *= array[i]; } // At this point, prod will either be NaN or 0 return prod == 0; // if prod is NaN, this check will return false } static inline bool sk_float_isinf(float x) { return SkFloatBits_IsInf(SkFloat2Bits(x)); } static inline bool sk_float_isnan(float x) { return !(x == x); } #define sk_double_isnan(a) sk_float_isnan(a) #define SK_MaxS32FitsInFloat 2147483520 #define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat #define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 #define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat /** * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. */ static inline int sk_float_saturate2int(float x) { x = SkTMin(x, SK_MaxS32FitsInFloat); x = SkTMax(x, SK_MinS32FitsInFloat); return (int)x; } /** * Return the closest int for the given double. Returns SK_MaxS32 for NaN. */ static inline int sk_double_saturate2int(double x) { x = SkTMin(x, SK_MaxS32); x = SkTMax(x, SK_MinS32); return (int)x; } /** * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. */ static inline int64_t sk_float_saturate2int64(float x) { x = SkTMin(x, SK_MaxS64FitsInFloat); x = SkTMax(x, SK_MinS64FitsInFloat); return (int64_t)x; } #define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) #define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f)) #define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) #define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) #define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f) #define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) #define sk_double_floor(x) floor(x) #define sk_double_round(x) floor((x) + 0.5) #define sk_double_ceil(x) ceil(x) #define sk_double_floor2int(x) (int)floor(x) #define sk_double_round2int(x) (int)floor((x) + 0.5) #define sk_double_ceil2int(x) (int)ceil(x) // Cast double to float, ignoring any warning about too-large finite values being cast to float. // Clang thinks this is undefined, but it's actually implementation defined to return either // the largest float or infinity (one of the two bracketing representable floats). Good enough! #if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007 __attribute__((no_sanitize("float-cast-overflow"))) #endif static inline float sk_double_to_float(double x) { return static_cast(x); } #define SK_FloatNaN std::numeric_limits::quiet_NaN() #define SK_FloatInfinity (+std::numeric_limits::infinity()) #define SK_FloatNegativeInfinity (-std::numeric_limits::infinity()) #define SK_DoubleNaN std::numeric_limits::quiet_NaN() // Returns false if any of the floats are outside of [0...1] // Returns true if count is 0 bool sk_floats_are_unit(const float array[], size_t count); static inline float sk_float_rsqrt_portable(float x) { // Get initial estimate. int i; memcpy(&i, &x, 4); i = 0x5F1FFFF9 - (i>>1); float estimate; memcpy(&estimate, &i, 4); // One step of Newton's method to refine. const float estimate_sq = estimate*estimate; estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); return estimate; } // Fast, approximate inverse square root. // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. static inline float sk_float_rsqrt(float x) { // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got // it at compile time. This is going to be too fast to productively hide behind a function pointer. // // We do one step of Newton's method to refine the estimates in the NEON and portable paths. No // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. // // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); #elif defined(SK_ARM_HAS_NEON) // Get initial estimate. const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. float32x2_t estimate = vrsqrte_f32(xx); // One step of Newton's method to refine. const float32x2_t estimate_sq = vmul_f32(estimate, estimate); estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. #else return sk_float_rsqrt_portable(x); #endif } // This is the number of significant digits we can print in a string such that when we read that // string back we get the floating point number we expect. The minimum value C requires is 6, but // most compilers support 9 #ifdef FLT_DECIMAL_DIG #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG #else #define SK_FLT_DECIMAL_DIG 9 #endif // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not // so we have a helper that suppresses the possible undefined-behavior warnings. #ifdef __clang__ __attribute__((no_sanitize("float-divide-by-zero"))) #endif static inline float sk_ieee_float_divide(float numer, float denom) { return numer / denom; } #ifdef __clang__ __attribute__((no_sanitize("float-divide-by-zero"))) #endif static inline double sk_ieee_double_divide(double numer, double denom) { return numer / denom; } // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO. static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) { return sk_ieee_float_divide(n,d); } static inline float sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n, double d) { return sk_ieee_double_divide(n,d); } static inline float sk_fmaf(float f, float m, float a) { #if defined(FP_FAST_FMA) return std::fmaf(f,m,a); #else return f*m+a; #endif } #endif