/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkFilterQuality.h" #include "include/core/SkFont.h" #include "include/core/SkFontStyle.h" #include "include/core/SkFontTypes.h" #include "include/core/SkImage.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPixmap.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTypeface.h" #include "include/core/SkTypes.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrConfig.h" #include "include/gpu/GrDirectContext.h" #include "include/gpu/GrRecordingContext.h" #include "include/gpu/GrTypes.h" #include "include/private/GrTypesPriv.h" #include "include/private/SkTArray.h" #include "include/private/SkTDArray.h" #include "include/private/SkTPin.h" #include "include/private/SkTemplates.h" #include "include/utils/SkTextUtils.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkYUVMath.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "tools/ToolUtils.h" #include "tools/gpu/YUVUtils.h" #include #include #include #include #include class GrSurfaceDrawContext; static const int kTileWidthHeight = 128; static const int kLabelWidth = 64; static const int kLabelHeight = 32; static const int kSubsetPadding = 8; static const int kPad = 1; enum YUVFormat { // 4:2:0 formats, 24 bpp kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures) // 4:2:0 formats, "15 bpp" (but really 24 bpp) kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout // except that the bottom 6 bits are zeroed out (2 textures) // TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its // fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though). // This is laid out the same as kP016 and kP010 but uses F16 unstead of U16. In this case // the 10 bits/channel vs 16 bits/channel distinction isn't relevant. kP016F_YUVFormat, // 4:4:4 formats, 64 bpp kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture) // 4:4:4 formats, 32 bpp kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture) kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture) // 4:2:0 formats, 12 bpp kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures) kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures) kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures) kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures) kLast_YUVFormat = kYV12_YUVFormat }; // Does the YUVFormat contain a slot for alpha? If not an external alpha plane is required for // transparency. static bool has_alpha_channel(YUVFormat format) { switch (format) { case kP016_YUVFormat: return false; case kP010_YUVFormat: return false; case kP016F_YUVFormat: return false; case kY416_YUVFormat: return true; case kAYUV_YUVFormat: return true; case kY410_YUVFormat: return true; case kNV12_YUVFormat: return false; case kNV21_YUVFormat: return false; case kI420_YUVFormat: return false; case kYV12_YUVFormat: return false; } SkUNREACHABLE; } class YUVAPlanarConfig { public: YUVAPlanarConfig(YUVFormat format, bool opaque, SkEncodedOrigin origin) : fOrigin(origin) { switch (format) { case kP016_YUVFormat: case kP010_YUVFormat: case kP016F_YUVFormat: case kNV12_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_UV; fSubsampling = SkYUVAInfo::Subsampling::k420; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_UV_A; fSubsampling = SkYUVAInfo::Subsampling::k420; } break; case kY416_YUVFormat: case kY410_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kUYV; fSubsampling = SkYUVAInfo::Subsampling::k444; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kUYVA; fSubsampling = SkYUVAInfo::Subsampling::k444; } break; case kAYUV_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kYUV; fSubsampling = SkYUVAInfo::Subsampling::k444; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kYUVA; fSubsampling = SkYUVAInfo::Subsampling::k444; } break; case kNV21_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_VU; fSubsampling = SkYUVAInfo::Subsampling::k420; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_VU_A; fSubsampling = SkYUVAInfo::Subsampling::k420; } break; case kI420_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_U_V; fSubsampling = SkYUVAInfo::Subsampling::k420; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_U_V_A; fSubsampling = SkYUVAInfo::Subsampling::k420; } break; case kYV12_YUVFormat: if (opaque) { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_V_U; fSubsampling = SkYUVAInfo::Subsampling::k420; } else { fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_V_U_A; fSubsampling = SkYUVAInfo::Subsampling::k420; } break; } } int numPlanes() const { return SkYUVAInfo::NumPlanes(fPlaneConfig); } SkYUVAPixmaps makeYUVAPixmaps(SkISize dimensions, SkYUVColorSpace yuvColorSpace, const SkBitmap bitmaps[], int numBitmaps) const; private: SkYUVAInfo::PlaneConfig fPlaneConfig; SkYUVAInfo::Subsampling fSubsampling; SkEncodedOrigin fOrigin; }; SkYUVAPixmaps YUVAPlanarConfig::makeYUVAPixmaps(SkISize dimensions, SkYUVColorSpace yuvColorSpace, const SkBitmap bitmaps[], int numBitmaps) const { SkYUVAInfo info(dimensions, fPlaneConfig, fSubsampling, yuvColorSpace, fOrigin); SkPixmap pmaps[SkYUVAInfo::kMaxPlanes]; int n = info.numPlanes(); if (numBitmaps < n) { return {}; } for (int i = 0; i < n; ++i) { pmaps[i] = bitmaps[i].pixmap(); } return SkYUVAPixmaps::FromExternalPixmaps(info, pmaps); } // All the planes we need to construct the various YUV formats struct PlaneData { SkBitmap fYFull; SkBitmap fUFull; SkBitmap fVFull; SkBitmap fAFull; SkBitmap fUQuarter; // 2x2 downsampled U channel SkBitmap fVQuarter; // 2x2 downsampled V channel SkBitmap fFull; SkBitmap fQuarter; // 2x2 downsampled YUVA }; // Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle // and have tangents 'v1' and 'v2'. static void add_arc(SkPath* path, const SkPoint& o1, const SkVector& v1, const SkPoint& o2, const SkVector& v2, SkTDArray* circles, bool takeLongWayRound) { SkVector v3 = { -v1.fY, v1.fX }; SkVector v4 = { v2.fY, -v2.fX }; SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4); SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY }; SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t }; if (circles) { circles->push_back(r); } SkVector startV = o1 - center, endV = o2 - center; startV.normalize(); endV.normalize(); SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX)); SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX)); startDeg += 360.0f; startDeg = fmodf(startDeg, 360.0f); endDeg += 360.0f; endDeg = fmodf(endDeg, 360.0f); if (endDeg < startDeg) { endDeg += 360.0f; } SkScalar sweepDeg = SkTAbs(endDeg - startDeg); if (!takeLongWayRound) { sweepDeg = sweepDeg - 360; } path->arcTo(r, startDeg, sweepDeg, false); } static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius, SkScalar ratio, int numLobes, SkTDArray* circles) { if (numLobes <= 1) { return SkPath(); } SkPath p; int numDivisions = 2 * numLobes; SkScalar fullLobeDegrees = 360.0f / numLobes; SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f); SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f); SkMatrix outerStep, innerStep; outerStep.setRotate(outDegrees); innerStep.setRotate(innerDegrees); SkVector curV = SkVector::Make(0.0f, 1.0f); if (circles) { circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius, o.fX + innerRadius, o.fY + innerRadius)); } p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); for (int i = 0; i < numDivisions; ++i) { SkVector nextV; if (0 == (i % 2)) { nextV = outerStep.mapVector(curV.fX, curV.fY); SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX, o.fY + outerRadius * curV.fY); SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX, o.fY + outerRadius * nextV.fY); p.lineTo(top); add_arc(&p, top, curV, nextTop, nextV, circles, true); } else { nextV = innerStep.mapVector(curV.fX, curV.fY); SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX, o.fY + innerRadius * nextV.fY); p.lineTo(bot); add_arc(&p, bot, curV, nextBot, nextV, nullptr, false); } curV = nextV; } p.close(); return p; } static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path, const SkTDArray& circles, bool opaque, bool padWithRed) { const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104)); const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252)); const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117)); const SkColor kMagenta = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 60, 217)); const SkColor kCyan = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 45, 237, 205)); int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kSubsetPadding : 0); SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight, colorType, kPremul_SkAlphaType); SkBitmap bm; bm.allocPixels(ii); std::unique_ptr canvas = SkCanvas::MakeRasterDirect(ii, bm.getPixels(), bm.rowBytes()); if (padWithRed) { canvas->clear(SK_ColorRED); canvas->translate(kSubsetPadding, kSubsetPadding); canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight)); } canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT); SkPaint paint; paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency paint.setColor(kBlue); canvas->drawPath(path, paint); paint.setBlendMode(SkBlendMode::kSrc); for (int i = 0; i < circles.count(); ++i) { SkColor color; switch (i % 3) { case 0: color = kYellow; break; case 1: color = kMagenta; break; default: color = kCyan; break; } paint.setColor(color); paint.setAlpha(opaque ? 0xFF : 0x40); SkRect r = circles[i]; r.inset(r.width()/4, r.height()/4); canvas->drawOval(r, paint); } return bm; } static void convert_rgba_to_yuva(const float mtx[20], SkColor col, uint8_t yuv[4]) { const uint8_t r = SkColorGetR(col); const uint8_t g = SkColorGetG(col); const uint8_t b = SkColorGetB(col); yuv[0] = SkTPin(SkScalarRoundToInt(mtx[ 0]*r + mtx[ 1]*g + mtx[ 2]*b + mtx[ 4]*255), 0, 255); yuv[1] = SkTPin(SkScalarRoundToInt(mtx[ 5]*r + mtx[ 6]*g + mtx[ 7]*b + mtx[ 9]*255), 0, 255); yuv[2] = SkTPin(SkScalarRoundToInt(mtx[10]*r + mtx[11]*g + mtx[12]*b + mtx[14]*255), 0, 255); yuv[3] = SkColorGetA(col); } static void extract_planes(const SkBitmap& origBM, SkYUVColorSpace yuvColorSpace, SkEncodedOrigin origin, PlaneData* planes) { SkImageInfo ii = origBM.info(); if (SkEncodedOriginSwapsWidthHeight(origin)) { ii = ii.makeWH(ii.height(), ii.width()); } SkBitmap orientedBM; orientedBM.allocPixels(ii); SkCanvas canvas(orientedBM); SkMatrix matrix = SkEncodedOriginToMatrix(origin, origBM.width(), origBM.height()); SkAssertResult(matrix.invert(&matrix)); canvas.concat(matrix); canvas.drawImage(origBM.asImage(), 0, 0); if (yuvColorSpace == kIdentity_SkYUVColorSpace) { // To test the identity color space we use JPEG YUV planes yuvColorSpace = kJPEG_SkYUVColorSpace; } SkASSERT(!(ii.width() % 2)); SkASSERT(!(ii.height() % 2)); planes->fYFull.allocPixels( SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fUFull.allocPixels( SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVFull.allocPixels( SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fAFull.allocPixels(SkImageInfo::MakeA8(ii.dimensions())); planes->fUQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fFull.allocPixels( SkImageInfo::Make(ii.dimensions(), kRGBA_F32_SkColorType, kUnpremul_SkAlphaType)); planes->fQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType)); float mtx[20]; SkColorMatrix_RGB2YUV(yuvColorSpace, mtx); SkColor4f* dst = (SkColor4f *) planes->fFull.getAddr(0, 0); for (int y = 0; y < orientedBM.height(); ++y) { for (int x = 0; x < orientedBM.width(); ++x) { SkColor col = orientedBM.getColor(x, y); uint8_t yuva[4]; convert_rgba_to_yuva(mtx, col, yuva); *planes->fYFull.getAddr8(x, y) = yuva[0]; *planes->fUFull.getAddr8(x, y) = yuva[1]; *planes->fVFull.getAddr8(x, y) = yuva[2]; *planes->fAFull.getAddr8(x, y) = yuva[3]; // TODO: render in F32 rather than converting here dst->fR = yuva[0] / 255.0f; dst->fG = yuva[1] / 255.0f; dst->fB = yuva[2] / 255.0f; dst->fA = yuva[3] / 255.0f; ++dst; } } dst = (SkColor4f *) planes->fQuarter.getAddr(0, 0); for (int y = 0; y < orientedBM.height()/2; ++y) { for (int x = 0; x < orientedBM.width()/2; ++x) { uint32_t yAccum = 0, uAccum = 0, vAccum = 0, aAccum = 0; yAccum += *planes->fYFull.getAddr8(2*x, 2*y); yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y); yAccum += *planes->fYFull.getAddr8(2*x, 2*y+1); yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x, 2*y); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y); uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1); *planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f; vAccum += *planes->fVFull.getAddr8(2*x, 2*y); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y); vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1); *planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f; aAccum += *planes->fAFull.getAddr8(2*x, 2*y); aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y); aAccum += *planes->fAFull.getAddr8(2*x, 2*y+1); aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y+1); // TODO: render in F32 rather than converting here dst->fR = yAccum / (4.0f * 255.0f); dst->fG = uAccum / (4.0f * 255.0f); dst->fB = vAccum / (4.0f * 255.0f); dst->fA = aAccum / (4.0f * 255.0f); ++dst; } } } // Create a 2x2 downsampled SkBitmap. It is stored in an RG texture. It can optionally be // uv (i.e., NV12) or vu (i.e., NV21). static SkBitmap make_quarter_2_channel(const SkBitmap& fullY, const SkBitmap& quarterU, const SkBitmap& quarterV, bool uv) { SkBitmap result; result.allocPixels(SkImageInfo::Make(fullY.width()/2, fullY.height()/2, kR8G8_unorm_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < fullY.height()/2; ++y) { for (int x = 0; x < fullY.width()/2; ++x) { uint8_t u8 = *quarterU.getAddr8(x, y); uint8_t v8 = *quarterV.getAddr8(x, y); if (uv) { *result.getAddr16(x, y) = (v8 << 8) | u8; } else { *result.getAddr16(x, y) = (u8 << 8) | v8; } } } return result; } // Create some flavor of a 16bits/channel bitmap from a RGBA_F32 source static SkBitmap make_16(const SkBitmap& src, SkColorType dstCT, std::function convert) { SkASSERT(src.colorType() == kRGBA_F32_SkColorType); SkBitmap result; result.allocPixels(SkImageInfo::Make(src.dimensions(), dstCT, kUnpremul_SkAlphaType)); for (int y = 0; y < src.height(); ++y) { for (int x = 0; x < src.width(); ++x) { const float* srcPixel = (const float*) src.getAddr(x, y); uint16_t* dstPixel = (uint16_t*) result.getAddr(x, y); convert(dstPixel, srcPixel); } } return result; } static uint16_t flt_2_uint16(float flt) { return SkScalarRoundToInt(flt * 65535.0f); } // Recombine the separate planes into some YUV format. Returns the number of planes. static int create_YUV(const PlaneData& planes, YUVFormat yuvFormat, SkBitmap resultBMs[], bool opaque) { int nextLayer = 0; switch (yuvFormat) { case kY416_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kR16G16B16A16_unorm_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = flt_2_uint16(srcPixel[1]); // U dstPixel[1] = flt_2_uint16(srcPixel[0]); // Y dstPixel[2] = flt_2_uint16(srcPixel[2]); // V dstPixel[3] = flt_2_uint16(srcPixel[3]); // A }); break; } case kAYUV_YUVFormat: { SkBitmap yuvaFull; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { uint8_t Y = *planes.fYFull.getAddr8(x, y); uint8_t U = *planes.fUFull.getAddr8(x, y); uint8_t V = *planes.fVFull.getAddr8(x, y); uint8_t A = *planes.fAFull.getAddr8(x, y); // NOT premul! // V and Y swapped to match RGBA layout SkColor c = SkColorSetARGB(A, V, U, Y); *yuvaFull.getAddr32(x, y) = c; } } resultBMs[nextLayer++] = yuvaFull; break; } case kY410_YUVFormat: { SkBitmap yuvaFull; uint32_t Y, U, V; uint8_t A; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_1010102_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f); U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f); V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f); A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f); // NOT premul! *yuvaFull.getAddr32(x, y) = (A << 30) | (V << 20) | (Y << 10) | (U << 0); } } resultBMs[nextLayer++] = yuvaFull; break; } case kP016_YUVFormat: // fall through case kP010_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t val16 = flt_2_uint16(srcPixel[0]); dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0) : val16; }); resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t u16 = flt_2_uint16(srcPixel[1]); uint16_t v16 = flt_2_uint16(srcPixel[2]); dstPixel[0] = tenBitsPP ? (u16 & 0xFFC0) : u16; dstPixel[1] = tenBitsPP ? (v16 & 0xFFC0) : v16; }); if (!opaque) { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType, [tenBitsPP = (yuvFormat == kP010_YUVFormat)] (uint16_t* dstPixel, const float* srcPixel) { uint16_t val16 = flt_2_uint16(srcPixel[3]); dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0) : val16; }); } return nextLayer; } case kP016F_YUVFormat: { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[0]); }); resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[1]); dstPixel[1] = SkFloatToHalf(srcPixel[2]); }); if (!opaque) { resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType, [] (uint16_t* dstPixel, const float* srcPixel) { dstPixel[0] = SkFloatToHalf(srcPixel[3]); }); } return nextLayer; } case kNV12_YUVFormat: { SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, true); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = uvQuarter; break; } case kNV21_YUVFormat: { SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, false); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = vuQuarter; break; } case kI420_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fUQuarter; resultBMs[nextLayer++] = planes.fVQuarter; break; case kYV12_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fVQuarter; resultBMs[nextLayer++] = planes.fUQuarter; break; } if (!opaque && !has_alpha_channel(yuvFormat)) { resultBMs[nextLayer++] = planes.fAFull; } return nextLayer; } static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) { static const char* kYUVColorSpaceNames[] = {"JPEG", "601", "709F", "709L", "2020_8F", "2020_8L", "2020_10F", "2020_10L", "2020_12F", "2020_12L", "Identity"}; static_assert(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace + 1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString colLabel; colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); int y = textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); colLabel.printf("%s", opaque ? "Opaque" : "Transparent"); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); y += textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); } static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) { static const char* kYUVFormatNames[] = { "P016", "P010", "P016F", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12" }; static_assert(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat + 1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString rowLabel; rowLabel.printf("%s", kYUVFormatNames[yuvFormat]); font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect); y += kTileWidthHeight/2 + textRect.height()/2; canvas->drawString(rowLabel, 0, y, font, paint); } static sk_sp yuv_to_rgb_colorfilter() { static const float kJPEGConversionMatrix[20] = { 1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255, 1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255, 1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; return SkColorFilters::Matrix(kJPEGConversionMatrix); } namespace skiagm { // This GM creates an opaque and transparent bitmap, extracts the planes and then recombines // them into various YUV formats. It then renders the results in the grid: // // JPEG 601 709 Identity // Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque // originals // P016 // P010 // P016F // Y416 // AYUV // Y410 // NV12 // NV21 // I420 // YV12 class WackyYUVFormatsGM : public GM { public: using Type = sk_gpu_test::LazyYUVImage::Type; WackyYUVFormatsGM(bool useTargetColorSpace, bool useSubset, Type type) : fUseTargetColorSpace(useTargetColorSpace), fUseSubset(useSubset), fImageType(type) { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { SkString name("wacky_yuv_formats"); if (fUseTargetColorSpace) { name += "_cs"; } if (fUseSubset) { name += "_domain"; } switch (fImageType) { case Type::kFromPixmaps: name += "_frompixmaps"; break; case Type::kFromTextures: break; case Type::kFromGenerator: name += "_imggen"; break; } return name; } SkISize onISize() override { int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x #-color-spaces int numRows = 1 + (kLast_YUVFormat + 1); // original + #-yuv-formats int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseSubset ? 1.5f : 1.f)); return SkISize::Make(kLabelWidth + numCols * (wh + kPad), kLabelHeight + numRows * (wh + kPad)); } void createBitmaps() { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseSubset); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseSubset); } if (fUseTargetColorSpace) { fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } } bool createImages(GrDirectContext* dContext) { int origin = 0; for (bool opaque : { false, true }) { for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { PlaneData planes; extract_planes(fOriginalBMs[opaque], static_cast(cs), static_cast(origin + 1), // valid origins are 1...8 &planes); for (int f = kP016_YUVFormat; f <= kLast_YUVFormat; ++f) { auto format = static_cast(f); SkBitmap resultBMs[4]; int numPlanes = create_YUV(planes, format, resultBMs, opaque); const YUVAPlanarConfig planarConfig(format, opaque, static_cast(origin + 1)); SkYUVAPixmaps pixmaps = planarConfig.makeYUVAPixmaps(fOriginalBMs[opaque].dimensions(), static_cast(cs), resultBMs, numPlanes); auto lazyYUV = sk_gpu_test::LazyYUVImage::Make(std::move(pixmaps)); fImages[opaque][cs][format] = lazyYUV->refImage(dContext, fImageType); } origin = (origin + 1) % 8; } } if (dContext) { // Some backends (e.g., Vulkan) require all work be completed for backend textures // before they are deleted. Since we don't know when we'll next have access to a // direct context, flush all the work now. dContext->flush(); dContext->submit(true); } return true; } DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override { this->createBitmaps(); if (dContext && dContext->abandoned()) { // This isn't a GpuGM so a null 'context' is okay but an abandoned context // if forbidden. return DrawResult::kSkip; } // Only the generator is expected to work with the CPU backend. if (fImageType != Type::kFromGenerator && !dContext) { return DrawResult::kSkip; } if (!this->createImages(dContext)) { *errorMsg = "Failed to create YUV images"; return DrawResult::kFail; } return DrawResult::kOk; } void onGpuTeardown() override { for (int i = 0; i < 2; ++i) { for (int j = 0; j <= kLastEnum_SkYUVColorSpace; ++j) { for (int k = 0; k <= kLast_YUVFormat; ++k) { fImages[i][j][k] = nullptr; } } } } void onDraw(SkCanvas* canvas) override { auto direct = GrAsDirectContext(canvas->recordingContext()); float cellWidth = kTileWidthHeight, cellHeight = kTileWidthHeight; if (fUseSubset) { cellWidth *= 1.5f; cellHeight *= 1.5f; } SkRect srcRect = SkRect::Make(fOriginalBMs[0].dimensions()); SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height()); SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint; if (fUseSubset) { srcRect.inset(kSubsetPadding, kSubsetPadding); // Draw a larger rectangle to ensure bilerp filtering would normally read outside the // srcRect and hit the red pixels, if strict constraint weren't used. dstRect.fRight = kLabelWidth + 1.5f * srcRect.width(); dstRect.fBottom = 1.5f * srcRect.height(); constraint = SkCanvas::kStrict_SrcRectConstraint; } SkSamplingOptions sampling(SkFilterMode::kLinear); for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { SkPaint paint; if (kIdentity_SkYUVColorSpace == cs) { // The identity color space needs post processing to appear correctly paint.setColorFilter(yuv_to_rgb_colorfilter()); } for (int opaque : { 0, 1 }) { dstRect.offsetTo(dstRect.fLeft, kLabelHeight); draw_col_label(canvas, dstRect.fLeft + cellWidth / 2, cs, opaque); canvas->drawImageRect(fOriginalBMs[opaque].asImage(), srcRect, dstRect, SkSamplingOptions(), nullptr, constraint); dstRect.offset(0.f, cellHeight + kPad); for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) { draw_row_label(canvas, dstRect.fTop, format); if (fUseTargetColorSpace && fImages[opaque][cs][format]) { // Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image // doesn't make a whole lot of sense. The colorSpace conversion will // operate on the YUV components rather than the RGB components. sk_sp csImage = fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace, direct); canvas->drawImageRect(csImage, srcRect, dstRect, sampling, &paint, constraint); } else { canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect, sampling, &paint, constraint); } dstRect.offset(0.f, cellHeight + kPad); } dstRect.offset(cellWidth + kPad, 0.f); } } } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1]; bool fUseTargetColorSpace; bool fUseSubset; Type fImageType; sk_sp fTargetColorSpace; using INHERITED = GM; }; ////////////////////////////////////////////////////////////////////////////// DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false, /* subset */ false, WackyYUVFormatsGM::Type::kFromTextures);) DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false, /* subset */ true, WackyYUVFormatsGM::Type::kFromTextures);) DEF_GM(return new WackyYUVFormatsGM(/* target cs */ true, /* subset */ false, WackyYUVFormatsGM::Type::kFromTextures);) DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false, /* subset */ false, WackyYUVFormatsGM::Type::kFromGenerator);) DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false, /* subset */ false, WackyYUVFormatsGM::Type::kFromPixmaps);) class YUVMakeColorSpaceGM : public GM { public: YUVMakeColorSpaceGM() { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { return SkString("yuv_make_color_space"); } SkISize onISize() override { int numCols = 4; // (transparent, opaque) x (untagged, tagged) int numRows = 5; // original, YUV, subset, makeNonTextureImage, readPixels return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad, numRows * (kTileWidthHeight + kPad) + kPad); } void createBitmaps() { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false); } fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } bool createImages(GrDirectContext* context) { for (bool opaque : { false, true }) { PlaneData planes; extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, kTopLeft_SkEncodedOrigin, &planes); SkBitmap resultBMs[4]; create_YUV(planes, kAYUV_YUVFormat, resultBMs, opaque); YUVAPlanarConfig planarConfig(kAYUV_YUVFormat, opaque, kTopLeft_SkEncodedOrigin); auto yuvaPixmaps = planarConfig.makeYUVAPixmaps(fOriginalBMs[opaque].dimensions(), kJPEG_Full_SkYUVColorSpace, resultBMs, SK_ARRAY_COUNT(resultBMs)); int i = 0; for (sk_sp cs : {sk_sp(nullptr), SkColorSpace::MakeSRGB()}) { auto lazyYUV = sk_gpu_test::LazyYUVImage::Make(yuvaPixmaps, GrMipmapped::kNo, std::move(cs)); fImages[opaque][i++] = lazyYUV->refImage(context, sk_gpu_test::LazyYUVImage::Type::kFromTextures); } } // Some backends (e.g., Vulkan) require all work be completed for backend textures before // they are deleted. Since we don't know when we'll next have access to a direct context, // flush all the work now. context->flush(); context->submit(true); return true; } DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override { if (!dContext || dContext->abandoned()) { *errorMsg = "DirectContext required to create YUV images"; return DrawResult::kSkip; } this->createBitmaps(); if (!this->createImages(dContext)) { *errorMsg = "Failed to create YUV images"; return DrawResult::kFail; } return DrawResult::kOk; } void onGpuTeardown() override { fImages[0][0] = fImages[0][1] = fImages[1][0] = fImages[1][1] = nullptr; } DrawResult onDraw(SkCanvas* canvas, SkString* msg) override { SkASSERT(fImages[0][0] && fImages[0][1] && fImages[1][0] && fImages[1][1]); auto dContext = GrAsDirectContext(canvas->recordingContext()); if (!dContext) { *msg = "YUV ColorSpace image creation requires a direct context."; return DrawResult::kSkip; } int x = kPad; for (int tagged : { 0, 1 }) { for (int opaque : { 0, 1 }) { int y = kPad; auto raster = fOriginalBMs[opaque].asImage()->makeColorSpace(fTargetColorSpace, nullptr); canvas->drawImage(raster, x, y); y += kTileWidthHeight + kPad; if (fImages[opaque][tagged]) { auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace, dContext); SkASSERT(yuv); SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get())); canvas->drawImage(yuv, x, y); y += kTileWidthHeight + kPad; SkIRect bounds = SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2); auto subset = yuv->makeSubset(bounds, dContext); SkASSERT(subset); canvas->drawImage(subset, x, y); y += kTileWidthHeight + kPad; auto nonTexture = yuv->makeNonTextureImage(); SkASSERT(nonTexture); canvas->drawImage(nonTexture, x, y); y += kTileWidthHeight + kPad; SkBitmap readBack; readBack.allocPixels(yuv->imageInfo()); SkAssertResult(yuv->readPixels(dContext, readBack.pixmap(), 0, 0)); canvas->drawImage(readBack.asImage(), x, y); } x += kTileWidthHeight + kPad; } } return DrawResult::kOk; } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][2]; sk_sp fTargetColorSpace; using INHERITED = GM; }; DEF_GM(return new YUVMakeColorSpaceGM();) } // namespace skiagm /////////////// #include "include/effects/SkColorMatrix.h" #include "src/core/SkAutoPixmapStorage.h" #include "tools/Resources.h" static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y, const SkImage* a, const SkImage* b) { auto sh = SkShaders::Blend(SkBlendMode::kDifference, a->makeShader(SkSamplingOptions()), b->makeShader(SkSamplingOptions())); SkPaint paint; paint.setShader(sh); canvas->save(); canvas->translate(x, y); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); SkColorMatrix cm; cm.setScale(64, 64, 64); paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm))); canvas->translate(0, a->height()); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); canvas->restore(); } // Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the // resulting (recombined) images (gpu only for now). // class YUVSplitterGM : public skiagm::GM { sk_sp fOrig; public: YUVSplitterGM() {} protected: SkString onShortName() override { return SkString("yuv_splitter"); } SkISize onISize() override { return SkISize::Make(1280, 768); } void onOnceBeforeDraw() override { fOrig = GetResourceAsImage("images/mandrill_256.png"); } void onDraw(SkCanvas* canvas) override { canvas->translate(fOrig->width(), 0); canvas->save(); SkYUVAInfo info; std::array, SkYUVAInfo::kMaxPlanes> planes; for (auto cs : {kRec709_SkYUVColorSpace, kRec601_SkYUVColorSpace, kJPEG_SkYUVColorSpace, kBT2020_SkYUVColorSpace}) { std::tie(planes, info) = sk_gpu_test::MakeYUVAPlanesAsA8(fOrig.get(), cs, SkYUVAInfo::Subsampling::k444, /*recording context*/ nullptr); SkPixmap pixmaps[4]; for (int i = 0; i < info.numPlanes(); ++i) { planes[i]->peekPixels(&pixmaps[i]); } auto yuvaPixmaps = SkYUVAPixmaps::FromExternalPixmaps(info, pixmaps); auto img = SkImage::MakeFromYUVAPixmaps(canvas->recordingContext(), yuvaPixmaps, GrMipMapped::kNo, /* limit to max tex size */ false, /* color space */ nullptr); if (img) { canvas->drawImage(img, 0, 0); draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get()); } canvas->translate(fOrig->width(), 0); } canvas->restore(); canvas->translate(-fOrig->width(), 0); int y = 0; for (int i = 0; i < info.numPlanes(); ++i) { canvas->drawImage(planes[i], 0, y); y += planes[i]->height(); } } private: using INHERITED = GM; }; DEF_GM( return new YUVSplitterGM; )