/* * Copyright (C) 2006-2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SkCanvas.h" #include "SkBounder.h" #include "SkDevice.h" #include "SkDraw.h" #include "SkDrawFilter.h" #include "SkDrawLooper.h" #include "SkPicture.h" #include "SkScalarCompare.h" #include "SkShape.h" #include "SkTemplates.h" #include "SkUtils.h" #include //#define SK_TRACE_SAVERESTORE #ifdef SK_TRACE_SAVERESTORE static int gLayerCounter; static void inc_layer() { ++gLayerCounter; printf("----- inc layer %d\n", gLayerCounter); } static void dec_layer() { --gLayerCounter; printf("----- dec layer %d\n", gLayerCounter); } static int gRecCounter; static void inc_rec() { ++gRecCounter; printf("----- inc rec %d\n", gRecCounter); } static void dec_rec() { --gRecCounter; printf("----- dec rec %d\n", gRecCounter); } static int gCanvasCounter; static void inc_canvas() { ++gCanvasCounter; printf("----- inc canvas %d\n", gCanvasCounter); } static void dec_canvas() { --gCanvasCounter; printf("----- dec canvas %d\n", gCanvasCounter); } #else #define inc_layer() #define dec_layer() #define inc_rec() #define dec_rec() #define inc_canvas() #define dec_canvas() #endif /////////////////////////////////////////////////////////////////////////////// // Helpers for computing fast bounds for quickReject tests static SkCanvas::EdgeType paint2EdgeType(const SkPaint* paint) { return paint != NULL && paint->isAntiAlias() ? SkCanvas::kAA_EdgeType : SkCanvas::kBW_EdgeType; } /////////////////////////////////////////////////////////////////////////////// /* This is the record we keep for each SkDevice that the user installs. The clip/matrix/proc are fields that reflect the top of the save/restore stack. Whenever the canvas changes, it marks a dirty flag, and then before these are used (assuming we're not on a layer) we rebuild these cache values: they reflect the top of the save stack, but translated and clipped by the device's XY offset and bitmap-bounds. */ struct DeviceCM { DeviceCM* fNext; SkDevice* fDevice; SkRegion fClip; const SkMatrix* fMatrix; SkPaint* fPaint; // may be null (in the future) int16_t fX, fY; // relative to base matrix/clip DeviceCM(SkDevice* device, int x, int y, const SkPaint* paint) : fNext(NULL) { if (NULL != device) { device->ref(); device->lockPixels(); } fDevice = device; fX = SkToS16(x); fY = SkToS16(y); fPaint = paint ? SkNEW_ARGS(SkPaint, (*paint)) : NULL; } ~DeviceCM() { if (NULL != fDevice) { fDevice->unlockPixels(); fDevice->unref(); } SkDELETE(fPaint); } void updateMC(const SkMatrix& totalMatrix, const SkRegion& totalClip, SkRegion* updateClip) { int x = fX; int y = fY; int width = fDevice->width(); int height = fDevice->height(); if ((x | y) == 0) { fMatrix = &totalMatrix; fClip = totalClip; } else { fMatrixStorage = totalMatrix; fMatrixStorage.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); fMatrix = &fMatrixStorage; totalClip.translate(-x, -y, &fClip); } fClip.op(0, 0, width, height, SkRegion::kIntersect_Op); // intersect clip, but don't translate it (yet) if (updateClip) { updateClip->op(x, y, x + width, y + height, SkRegion::kDifference_Op); } fDevice->setMatrixClip(*fMatrix, fClip); #ifdef SK_DEBUG if (!fClip.isEmpty()) { SkIRect deviceR; deviceR.set(0, 0, width, height); SkASSERT(deviceR.contains(fClip.getBounds())); } #endif } void translateClip() { if (fX | fY) { fClip.translate(fX, fY); } } private: SkMatrix fMatrixStorage; }; /* This is the record we keep for each save/restore level in the stack. Since a level optionally copies the matrix and/or stack, we have pointers for these fields. If the value is copied for this level, the copy is stored in the ...Storage field, and the pointer points to that. If the value is not copied for this level, we ignore ...Storage, and just point at the corresponding value in the previous level in the stack. */ class SkCanvas::MCRec { public: MCRec* fNext; SkMatrix* fMatrix; // points to either fMatrixStorage or prev MCRec SkRegion* fRegion; // points to either fRegionStorage or prev MCRec SkDrawFilter* fFilter; // the current filter (or null) DeviceCM* fLayer; /* If there are any layers in the stack, this points to the top-most one that is at or below this level in the stack (so we know what bitmap/device to draw into from this level. This value is NOT reference counted, since the real owner is either our fLayer field, or a previous one in a lower level.) */ DeviceCM* fTopLayer; MCRec(const MCRec* prev, int flags) { if (NULL != prev) { if (flags & SkCanvas::kMatrix_SaveFlag) { fMatrixStorage = *prev->fMatrix; fMatrix = &fMatrixStorage; } else { fMatrix = prev->fMatrix; } if (flags & SkCanvas::kClip_SaveFlag) { fRegionStorage = *prev->fRegion; fRegion = &fRegionStorage; } else { fRegion = prev->fRegion; } fFilter = prev->fFilter; fFilter->safeRef(); fTopLayer = prev->fTopLayer; } else { // no prev fMatrixStorage.reset(); fMatrix = &fMatrixStorage; fRegion = &fRegionStorage; fFilter = NULL; fTopLayer = NULL; } fLayer = NULL; // don't bother initializing fNext inc_rec(); } ~MCRec() { fFilter->safeUnref(); SkDELETE(fLayer); dec_rec(); } private: SkMatrix fMatrixStorage; SkRegion fRegionStorage; }; class SkDrawIter : public SkDraw { public: SkDrawIter(SkCanvas* canvas, bool skipEmptyClips = true) { fCanvas = canvas; canvas->updateDeviceCMCache(); fBounder = canvas->getBounder(); fCurrLayer = canvas->fMCRec->fTopLayer; fSkipEmptyClips = skipEmptyClips; } bool next() { // skip over recs with empty clips if (fSkipEmptyClips) { while (fCurrLayer && fCurrLayer->fClip.isEmpty()) { fCurrLayer = fCurrLayer->fNext; } } if (NULL != fCurrLayer) { const DeviceCM* rec = fCurrLayer; fMatrix = rec->fMatrix; fClip = &rec->fClip; fDevice = rec->fDevice; fBitmap = &fDevice->accessBitmap(true); fLayerX = rec->fX; fLayerY = rec->fY; fPaint = rec->fPaint; SkDEBUGCODE(this->validate();) fCurrLayer = rec->fNext; if (fBounder) { fBounder->setClip(fClip); } // fCurrLayer may be NULL now fCanvas->prepareForDeviceDraw(fDevice); return true; } return false; } int getX() const { return fLayerX; } int getY() const { return fLayerY; } SkDevice* getDevice() const { return fDevice; } const SkMatrix& getMatrix() const { return *fMatrix; } const SkRegion& getClip() const { return *fClip; } const SkPaint* getPaint() const { return fPaint; } private: SkCanvas* fCanvas; const DeviceCM* fCurrLayer; const SkPaint* fPaint; // May be null. int fLayerX; int fLayerY; SkBool8 fSkipEmptyClips; typedef SkDraw INHERITED; }; ///////////////////////////////////////////////////////////////////////////// class AutoDrawLooper { public: AutoDrawLooper(SkCanvas* canvas, const SkPaint& paint, SkDrawFilter::Type t) : fCanvas(canvas), fPaint((SkPaint*)&paint), fType(t) { if ((fLooper = paint.getLooper()) != NULL) { fLooper->init(canvas, (SkPaint*)&paint); } else { fOnce = true; } fFilter = canvas->getDrawFilter(); fNeedFilterRestore = false; } ~AutoDrawLooper() { if (fNeedFilterRestore) { SkASSERT(fFilter); fFilter->restore(fCanvas, fPaint, fType); } if (NULL != fLooper) { fLooper->restore(); } } bool next() { SkDrawFilter* filter = fFilter; // if we drew earlier with a filter, then we need to restore first if (fNeedFilterRestore) { SkASSERT(filter); filter->restore(fCanvas, fPaint, fType); fNeedFilterRestore = false; } bool result; if (NULL != fLooper) { result = fLooper->next(); } else { result = fOnce; fOnce = false; } // if we're gonna draw, give the filter a chance to do its work if (result && NULL != filter) { fNeedFilterRestore = result = filter->filter(fCanvas, fPaint, fType); } return result; } private: SkDrawLooper* fLooper; SkDrawFilter* fFilter; SkCanvas* fCanvas; SkPaint* fPaint; SkDrawFilter::Type fType; bool fOnce; bool fNeedFilterRestore; }; /* Stack helper for managing a SkBounder. In the destructor, if we were given a bounder, we call its commit() method, signifying that we are done accumulating bounds for that draw. */ class SkAutoBounderCommit { public: SkAutoBounderCommit(SkBounder* bounder) : fBounder(bounder) {} ~SkAutoBounderCommit() { if (NULL != fBounder) { fBounder->commit(); } } private: SkBounder* fBounder; }; #include "SkColorPriv.h" class AutoValidator { public: AutoValidator(SkDevice* device) : fDevice(device) {} ~AutoValidator() { #ifdef SK_DEBUG const SkBitmap& bm = fDevice->accessBitmap(false); if (bm.config() == SkBitmap::kARGB_4444_Config) { for (int y = 0; y < bm.height(); y++) { const SkPMColor16* p = bm.getAddr16(0, y); for (int x = 0; x < bm.width(); x++) { SkPMColor16 c = p[x]; SkPMColor16Assert(c); } } } #endif } private: SkDevice* fDevice; }; ////////// macros to place around the internal draw calls ////////////////// #define ITER_BEGIN(paint, type) \ /* AutoValidator validator(fMCRec->fTopLayer->fDevice); */ \ AutoDrawLooper looper(this, paint, type); \ while (looper.next()) { \ SkAutoBounderCommit ac(fBounder); \ SkDrawIter iter(this); #define ITER_END } //////////////////////////////////////////////////////////////////////////// SkDevice* SkCanvas::init(SkDevice* device) { fBounder = NULL; fLocalBoundsCompareTypeDirty = true; fLastDeviceToGainFocus = NULL; fMCRec = (MCRec*)fMCStack.push_back(); new (fMCRec) MCRec(NULL, 0); fMCRec->fLayer = SkNEW_ARGS(DeviceCM, (NULL, 0, 0, NULL)); fMCRec->fTopLayer = fMCRec->fLayer; fMCRec->fNext = NULL; return this->setDevice(device); } SkCanvas::SkCanvas(SkDevice* device) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) { inc_canvas(); this->init(device); } SkCanvas::SkCanvas(const SkBitmap& bitmap) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) { inc_canvas(); this->init(SkNEW_ARGS(SkDevice, (bitmap)))->unref(); } SkCanvas::~SkCanvas() { // free up the contents of our deque this->restoreToCount(1); // restore everything but the last this->internalRestore(); // restore the last, since we're going away fBounder->safeUnref(); dec_canvas(); } SkBounder* SkCanvas::setBounder(SkBounder* bounder) { SkRefCnt_SafeAssign(fBounder, bounder); return bounder; } SkDrawFilter* SkCanvas::getDrawFilter() const { return fMCRec->fFilter; } SkDrawFilter* SkCanvas::setDrawFilter(SkDrawFilter* filter) { SkRefCnt_SafeAssign(fMCRec->fFilter, filter); return filter; } /////////////////////////////////////////////////////////////////////////////// SkDevice* SkCanvas::getDevice() const { // return root device SkDeque::Iter iter(fMCStack); MCRec* rec = (MCRec*)iter.next(); SkASSERT(rec && rec->fLayer); return rec->fLayer->fDevice; } SkDevice* SkCanvas::setDevice(SkDevice* device) { // return root device SkDeque::Iter iter(fMCStack); MCRec* rec = (MCRec*)iter.next(); SkASSERT(rec && rec->fLayer); SkDevice* rootDevice = rec->fLayer->fDevice; if (rootDevice == device) { return device; } /* Notify the devices that they are going in/out of scope, so they can do things like lock/unlock their pixels, etc. */ if (device) { device->lockPixels(); } if (rootDevice) { rootDevice->unlockPixels(); } SkRefCnt_SafeAssign(rec->fLayer->fDevice, device); rootDevice = device; fDeviceCMDirty = true; /* Now we update our initial region to have the bounds of the new device, and then intersect all of the clips in our stack with these bounds, to ensure that we can't draw outside of the device's bounds (and trash memory). NOTE: this is only a partial-fix, since if the new device is larger than the previous one, we don't know how to "enlarge" the clips in our stack, so drawing may be artificially restricted. Without keeping a history of all calls to canvas->clipRect() and canvas->clipPath(), we can't exactly reconstruct the correct clips, so this approximation will have to do. The caller really needs to restore() back to the base if they want to accurately take advantage of the new device bounds. */ if (NULL == device) { rec->fRegion->setEmpty(); while ((rec = (MCRec*)iter.next()) != NULL) { (void)rec->fRegion->setEmpty(); } } else { // compute our total bounds for all devices SkIRect bounds; bounds.set(0, 0, device->width(), device->height()); // now jam our 1st clip to be bounds, and intersect the rest with that rec->fRegion->setRect(bounds); while ((rec = (MCRec*)iter.next()) != NULL) { (void)rec->fRegion->op(bounds, SkRegion::kIntersect_Op); } } return device; } SkDevice* SkCanvas::setBitmapDevice(const SkBitmap& bitmap) { SkDevice* device = this->setDevice(SkNEW_ARGS(SkDevice, (bitmap))); device->unref(); return device; } ////////////////////////////////////////////////////////////////////////////// bool SkCanvas::getViewport(SkIPoint* size) const { return false; } bool SkCanvas::setViewport(int width, int height) { return false; } void SkCanvas::updateDeviceCMCache() { if (fDeviceCMDirty) { const SkMatrix& totalMatrix = this->getTotalMatrix(); const SkRegion& totalClip = this->getTotalClip(); DeviceCM* layer = fMCRec->fTopLayer; if (NULL == layer->fNext) { // only one layer layer->updateMC(totalMatrix, totalClip, NULL); } else { SkRegion clip; clip = totalClip; // make a copy do { layer->updateMC(totalMatrix, clip, &clip); } while ((layer = layer->fNext) != NULL); } fDeviceCMDirty = false; } } void SkCanvas::prepareForDeviceDraw(SkDevice* device) { SkASSERT(device); if (fLastDeviceToGainFocus != device) { device->gainFocus(this); fLastDeviceToGainFocus = device; } } /////////////////////////////////////////////////////////////////////////////// int SkCanvas::internalSave(SaveFlags flags) { int saveCount = this->getSaveCount(); // record this before the actual save MCRec* newTop = (MCRec*)fMCStack.push_back(); new (newTop) MCRec(fMCRec, flags); // balanced in restore() newTop->fNext = fMCRec; fMCRec = newTop; return saveCount; } int SkCanvas::save(SaveFlags flags) { // call shared impl return this->internalSave(flags); } #define C32MASK (1 << SkBitmap::kARGB_8888_Config) #define C16MASK (1 << SkBitmap::kRGB_565_Config) #define C8MASK (1 << SkBitmap::kA8_Config) static SkBitmap::Config resolve_config(SkCanvas* canvas, const SkIRect& bounds, SkCanvas::SaveFlags flags, bool* isOpaque) { *isOpaque = (flags & SkCanvas::kHasAlphaLayer_SaveFlag) == 0; #if 0 // loop through and union all the configs we may draw into uint32_t configMask = 0; for (int i = canvas->countLayerDevices() - 1; i >= 0; --i) { SkDevice* device = canvas->getLayerDevice(i); if (device->intersects(bounds)) configMask |= 1 << device->config(); } // if the caller wants alpha or fullcolor, we can't return 565 if (flags & (SkCanvas::kFullColorLayer_SaveFlag | SkCanvas::kHasAlphaLayer_SaveFlag)) configMask &= ~C16MASK; switch (configMask) { case C8MASK: // if we only have A8, return that return SkBitmap::kA8_Config; case C16MASK: // if we only have 565, return that return SkBitmap::kRGB_565_Config; default: return SkBitmap::kARGB_8888_Config; // default answer } #else return SkBitmap::kARGB_8888_Config; // default answer #endif } static bool bounds_affects_clip(SkCanvas::SaveFlags flags) { return (flags & SkCanvas::kClipToLayer_SaveFlag) != 0; } int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags flags) { // do this before we create the layer. We don't call the public save() since // that would invoke a possibly overridden virtual int count = this->internalSave(flags); fDeviceCMDirty = true; SkIRect ir; const SkIRect& clipBounds = this->getTotalClip().getBounds(); if (NULL != bounds) { SkRect r; this->getTotalMatrix().mapRect(&r, *bounds); r.roundOut(&ir); // early exit if the layer's bounds are clipped out if (!ir.intersect(clipBounds)) { if (bounds_affects_clip(flags)) fMCRec->fRegion->setEmpty(); return count; } } else { // no user bounds, so just use the clip ir = clipBounds; } // early exit if the clip is now empty if (bounds_affects_clip(flags) && !fMCRec->fRegion->op(ir, SkRegion::kIntersect_Op)) { return count; } bool isOpaque; SkBitmap::Config config = resolve_config(this, ir, flags, &isOpaque); SkDevice* device = this->createDevice(config, ir.width(), ir.height(), isOpaque, true); DeviceCM* layer = SkNEW_ARGS(DeviceCM, (device, ir.fLeft, ir.fTop, paint)); device->unref(); layer->fNext = fMCRec->fTopLayer; fMCRec->fLayer = layer; fMCRec->fTopLayer = layer; // this field is NOT an owner of layer return count; } int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha, SaveFlags flags) { if (0xFF == alpha) { return this->saveLayer(bounds, NULL, flags); } else { SkPaint tmpPaint; tmpPaint.setAlpha(alpha); return this->saveLayer(bounds, &tmpPaint, flags); } } void SkCanvas::restore() { // check for underflow if (fMCStack.count() > 1) { this->internalRestore(); } } void SkCanvas::internalRestore() { SkASSERT(fMCStack.count() != 0); fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; // reserve our layer (if any) DeviceCM* layer = fMCRec->fLayer; // may be null // now detach it from fMCRec so we can pop(). Gets freed after its drawn fMCRec->fLayer = NULL; // now do the normal restore() fMCRec->~MCRec(); // balanced in save() fMCStack.pop_back(); fMCRec = (MCRec*)fMCStack.back(); /* Time to draw the layer's offscreen. We can't call the public drawSprite, since if we're being recorded, we don't want to record this (the recorder will have already recorded the restore). */ if (NULL != layer) { if (layer->fNext) { this->drawDevice(layer->fDevice, layer->fX, layer->fY, layer->fPaint); // reset this, since drawDevice will have set it to true fDeviceCMDirty = true; } SkDELETE(layer); } } int SkCanvas::getSaveCount() const { return fMCStack.count(); } void SkCanvas::restoreToCount(int count) { // sanity check if (count < 1) { count = 1; } while (fMCStack.count() > count) { this->restore(); } } ///////////////////////////////////////////////////////////////////////////// // can't draw it if its empty, or its too big for a fixed-point width or height static bool reject_bitmap(const SkBitmap& bitmap) { return bitmap.width() <= 0 || bitmap.height() <= 0 || bitmap.width() > 32767 || bitmap.height() > 32767; } void SkCanvas::internalDrawBitmap(const SkBitmap& bitmap, const SkMatrix& matrix, const SkPaint* paint) { if (reject_bitmap(bitmap)) { return; } if (NULL == paint) { SkPaint tmpPaint; this->commonDrawBitmap(bitmap, matrix, tmpPaint); } else { this->commonDrawBitmap(bitmap, matrix, *paint); } } void SkCanvas::drawDevice(SkDevice* device, int x, int y, const SkPaint* paint) { SkPaint tmp; if (NULL == paint) { tmp.setDither(true); paint = &tmp; } ITER_BEGIN(*paint, SkDrawFilter::kBitmap_Type) while (iter.next()) { iter.fDevice->drawDevice(iter, device, x - iter.getX(), y - iter.getY(), *paint); } ITER_END } ///////////////////////////////////////////////////////////////////////////// bool SkCanvas::translate(SkScalar dx, SkScalar dy) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fMatrix->preTranslate(dx, dy); } bool SkCanvas::scale(SkScalar sx, SkScalar sy) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fMatrix->preScale(sx, sy); } bool SkCanvas::rotate(SkScalar degrees) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fMatrix->preRotate(degrees); } bool SkCanvas::skew(SkScalar sx, SkScalar sy) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fMatrix->preSkew(sx, sy); } bool SkCanvas::concat(const SkMatrix& matrix) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fMatrix->preConcat(matrix); } void SkCanvas::setMatrix(const SkMatrix& matrix) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; *fMCRec->fMatrix = matrix; } // this is not virtual, so it must call a virtual method so that subclasses // will see its action void SkCanvas::resetMatrix() { SkMatrix matrix; matrix.reset(); this->setMatrix(matrix); } ////////////////////////////////////////////////////////////////////////////// bool SkCanvas::clipRect(const SkRect& rect, SkRegion::Op op) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; if (fMCRec->fMatrix->rectStaysRect()) { // for these simpler matrices, we can stay a rect ever after applying // the matrix. This means we don't have to a) make a path, and b) tell // the region code to scan-convert the path, only to discover that it // is really just a rect. SkRect r; SkIRect ir; fMCRec->fMatrix->mapRect(&r, rect); r.round(&ir); return fMCRec->fRegion->op(ir, op); } else { // since we're rotate or some such thing, we convert the rect to a path // and clip against that, since it can handle any matrix. However, to // avoid recursion in the case where we are subclassed (e.g. Pictures) // we explicitly call "our" version of clipPath. SkPath path; path.addRect(rect); return this->SkCanvas::clipPath(path, op); } } bool SkCanvas::clipPath(const SkPath& path, SkRegion::Op op) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; SkPath devPath; path.transform(*fMCRec->fMatrix, &devPath); if (SkRegion::kIntersect_Op == op) { return fMCRec->fRegion->setPath(devPath, *fMCRec->fRegion); } else { SkRegion base; const SkBitmap& bm = this->getDevice()->accessBitmap(false); base.setRect(0, 0, bm.width(), bm.height()); if (SkRegion::kReplace_Op == op) { return fMCRec->fRegion->setPath(devPath, base); } else { SkRegion rgn; rgn.setPath(devPath, base); return fMCRec->fRegion->op(rgn, op); } } } bool SkCanvas::clipRegion(const SkRegion& rgn, SkRegion::Op op) { fDeviceCMDirty = true; fLocalBoundsCompareTypeDirty = true; return fMCRec->fRegion->op(rgn, op); } void SkCanvas::computeLocalClipBoundsCompareType() const { SkRect r; if (!this->getClipBounds(&r, kAA_EdgeType)) { fLocalBoundsCompareType.setEmpty(); } else { fLocalBoundsCompareType.set(SkScalarToCompareType(r.fLeft), SkScalarToCompareType(r.fTop), SkScalarToCompareType(r.fRight), SkScalarToCompareType(r.fBottom)); } } /* current impl ignores edgetype, and relies on getLocalClipBoundsCompareType(), which always returns a value assuming antialiasing (worst case) */ bool SkCanvas::quickReject(const SkRect& rect, EdgeType) const { if (fMCRec->fRegion->isEmpty()) { return true; } if (fMCRec->fMatrix->getType() & SkMatrix::kPerspective_Mask) { SkRect dst; fMCRec->fMatrix->mapRect(&dst, rect); SkIRect idst; dst.roundOut(&idst); return !SkIRect::Intersects(idst, fMCRec->fRegion->getBounds()); } else { const SkRectCompareType& clipR = this->getLocalClipBoundsCompareType(); // for speed, do the most likely reject compares first SkScalarCompareType userT = SkScalarToCompareType(rect.fTop); SkScalarCompareType userB = SkScalarToCompareType(rect.fBottom); if (userT >= clipR.fBottom || userB <= clipR.fTop) { return true; } SkScalarCompareType userL = SkScalarToCompareType(rect.fLeft); SkScalarCompareType userR = SkScalarToCompareType(rect.fRight); if (userL >= clipR.fRight || userR <= clipR.fLeft) { return true; } return false; } } bool SkCanvas::quickReject(const SkPath& path, EdgeType et) const { return path.isEmpty() || this->quickReject(path.getBounds(), et); } bool SkCanvas::quickRejectY(SkScalar top, SkScalar bottom, EdgeType et) const { /* current impl ignores edgetype, and relies on getLocalClipBoundsCompareType(), which always returns a value assuming antialiasing (worst case) */ if (fMCRec->fRegion->isEmpty()) { return true; } SkScalarCompareType userT = SkScalarToCompareType(top); SkScalarCompareType userB = SkScalarToCompareType(bottom); // check for invalid user Y coordinates (i.e. empty) // reed: why do we need to do this check, since it slows us down? if (userT >= userB) { return true; } // check if we are above or below the local clip bounds const SkRectCompareType& clipR = this->getLocalClipBoundsCompareType(); return userT >= clipR.fBottom || userB <= clipR.fTop; } bool SkCanvas::getClipBounds(SkRect* bounds, EdgeType et) const { const SkRegion& clip = *fMCRec->fRegion; if (clip.isEmpty()) { if (bounds) { bounds->setEmpty(); } return false; } SkMatrix inverse; // if we can't invert the CTM, we can't return local clip bounds if (!fMCRec->fMatrix->invert(&inverse)) { if (bounds) { bounds->setEmpty(); } return false; } if (NULL != bounds) { SkRect r; // get the clip's bounds const SkIRect& ibounds = clip.getBounds(); // adjust it outwards if we are antialiasing int inset = (kAA_EdgeType == et); r.iset(ibounds.fLeft - inset, ibounds.fTop - inset, ibounds.fRight + inset, ibounds.fBottom + inset); // invert into local coordinates inverse.mapRect(bounds, r); } return true; } const SkMatrix& SkCanvas::getTotalMatrix() const { return *fMCRec->fMatrix; } const SkRegion& SkCanvas::getTotalClip() const { return *fMCRec->fRegion; } /////////////////////////////////////////////////////////////////////////////// SkDevice* SkCanvas::createDevice(SkBitmap::Config config, int width, int height, bool isOpaque, bool isForLayer) { SkBitmap bitmap; bitmap.setConfig(config, width, height); bitmap.setIsOpaque(isOpaque); // should this happen in the device subclass? bitmap.allocPixels(); if (!bitmap.isOpaque()) { bitmap.eraseARGB(0, 0, 0, 0); } return SkNEW_ARGS(SkDevice, (bitmap)); } ////////////////////////////////////////////////////////////////////////////// // These are the virtual drawing methods ////////////////////////////////////////////////////////////////////////////// void SkCanvas::drawPaint(const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kPaint_Type) while (iter.next()) { iter.fDevice->drawPaint(iter, paint); } ITER_END } void SkCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { if ((long)count <= 0) { return; } SkASSERT(pts != NULL); ITER_BEGIN(paint, SkDrawFilter::kPoint_Type) while (iter.next()) { iter.fDevice->drawPoints(iter, mode, count, pts, paint); } ITER_END } void SkCanvas::drawRect(const SkRect& r, const SkPaint& paint) { if (paint.canComputeFastBounds()) { SkRect storage; if (this->quickReject(paint.computeFastBounds(r, &storage), paint2EdgeType(&paint))) { return; } } ITER_BEGIN(paint, SkDrawFilter::kRect_Type) while (iter.next()) { iter.fDevice->drawRect(iter, r, paint); } ITER_END } void SkCanvas::drawPath(const SkPath& path, const SkPaint& paint) { if (paint.canComputeFastBounds()) { SkRect storage; const SkRect& bounds = path.getBounds(); if (this->quickReject(paint.computeFastBounds(bounds, &storage), paint2EdgeType(&paint))) { return; } } ITER_BEGIN(paint, SkDrawFilter::kPath_Type) while (iter.next()) { iter.fDevice->drawPath(iter, path, paint); } ITER_END } void SkCanvas::drawBitmap(const SkBitmap& bitmap, SkScalar x, SkScalar y, const SkPaint* paint) { SkDEBUGCODE(bitmap.validate();) if (NULL == paint || (paint->getMaskFilter() == NULL)) { SkRect fastBounds; fastBounds.set(x, y, x + SkIntToScalar(bitmap.width()), y + SkIntToScalar(bitmap.height())); if (this->quickReject(fastBounds, paint2EdgeType(paint))) { return; } } SkMatrix matrix; matrix.setTranslate(x, y); this->internalDrawBitmap(bitmap, matrix, paint); } void SkCanvas::drawBitmapRect(const SkBitmap& bitmap, const SkIRect* src, const SkRect& dst, const SkPaint* paint) { if (bitmap.width() == 0 || bitmap.height() == 0 || dst.isEmpty()) { return; } // do this now, to avoid the cost of calling extract for RLE bitmaps if (this->quickReject(dst, paint2EdgeType(paint))) { return; } SkBitmap tmp; // storage if we need a subset of bitmap const SkBitmap* bitmapPtr = &bitmap; if (NULL != src) { if (!bitmap.extractSubset(&tmp, *src)) { return; // extraction failed } bitmapPtr = &tmp; } SkScalar width = SkIntToScalar(bitmapPtr->width()); SkScalar height = SkIntToScalar(bitmapPtr->height()); SkMatrix matrix; if (dst.width() == width && dst.height() == height) { matrix.setTranslate(dst.fLeft, dst.fTop); } else { SkRect tmpSrc; tmpSrc.set(0, 0, width, height); matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); } this->internalDrawBitmap(*bitmapPtr, matrix, paint); } void SkCanvas::drawBitmapMatrix(const SkBitmap& bitmap, const SkMatrix& matrix, const SkPaint* paint) { SkDEBUGCODE(bitmap.validate();) this->internalDrawBitmap(bitmap, matrix, paint); } void SkCanvas::commonDrawBitmap(const SkBitmap& bitmap, const SkMatrix& matrix, const SkPaint& paint) { SkDEBUGCODE(bitmap.validate();) ITER_BEGIN(paint, SkDrawFilter::kBitmap_Type) while (iter.next()) { iter.fDevice->drawBitmap(iter, bitmap, matrix, paint); } ITER_END } void SkCanvas::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint* paint) { SkDEBUGCODE(bitmap.validate();) if (reject_bitmap(bitmap)) { return; } SkPaint tmp; if (NULL == paint) { paint = &tmp; } ITER_BEGIN(*paint, SkDrawFilter::kBitmap_Type) while (iter.next()) { iter.fDevice->drawSprite(iter, bitmap, x - iter.getX(), y - iter.getY(), *paint); } ITER_END } void SkCanvas::drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kText_Type) while (iter.next()) { iter.fDevice->drawText(iter, text, byteLength, x, y, paint); } ITER_END } void SkCanvas::drawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kText_Type) while (iter.next()) { iter.fDevice->drawPosText(iter, text, byteLength, &pos->fX, 0, 2, paint); } ITER_END } void SkCanvas::drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kText_Type) while (iter.next()) { iter.fDevice->drawPosText(iter, text, byteLength, xpos, constY, 1, paint); } ITER_END } void SkCanvas::drawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kText_Type) while (iter.next()) { iter.fDevice->drawTextOnPath(iter, text, byteLength, path, matrix, paint); } ITER_END } void SkCanvas::drawVertices(VertexMode vmode, int vertexCount, const SkPoint verts[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { ITER_BEGIN(paint, SkDrawFilter::kPath_Type) while (iter.next()) { iter.fDevice->drawVertices(iter, vmode, vertexCount, verts, texs, colors, xmode, indices, indexCount, paint); } ITER_END } ////////////////////////////////////////////////////////////////////////////// // These methods are NOT virtual, and therefore must call back into virtual // methods, rather than actually drawing themselves. ////////////////////////////////////////////////////////////////////////////// void SkCanvas::drawARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b, SkXfermode::Mode mode) { SkPaint paint; paint.setARGB(a, r, g, b); if (SkXfermode::kSrcOver_Mode != mode) { paint.setXfermodeMode(mode); } this->drawPaint(paint); } void SkCanvas::drawColor(SkColor c, SkXfermode::Mode mode) { SkPaint paint; paint.setColor(c); if (SkXfermode::kSrcOver_Mode != mode) { paint.setXfermodeMode(mode); } this->drawPaint(paint); } void SkCanvas::drawPoint(SkScalar x, SkScalar y, const SkPaint& paint) { SkPoint pt; pt.set(x, y); this->drawPoints(kPoints_PointMode, 1, &pt, paint); } void SkCanvas::drawPoint(SkScalar x, SkScalar y, SkColor color) { SkPoint pt; SkPaint paint; pt.set(x, y); paint.setColor(color); this->drawPoints(kPoints_PointMode, 1, &pt, paint); } void SkCanvas::drawLine(SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1, const SkPaint& paint) { SkPoint pts[2]; pts[0].set(x0, y0); pts[1].set(x1, y1); this->drawPoints(kLines_PointMode, 2, pts, paint); } void SkCanvas::drawRectCoords(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom, const SkPaint& paint) { SkRect r; r.set(left, top, right, bottom); this->drawRect(r, paint); } void SkCanvas::drawCircle(SkScalar cx, SkScalar cy, SkScalar radius, const SkPaint& paint) { if (radius < 0) { radius = 0; } SkRect r; r.set(cx - radius, cy - radius, cx + radius, cy + radius); if (paint.canComputeFastBounds()) { SkRect storage; if (this->quickReject(paint.computeFastBounds(r, &storage), paint2EdgeType(&paint))) { return; } } SkPath path; path.addOval(r); this->drawPath(path, paint); } void SkCanvas::drawRoundRect(const SkRect& r, SkScalar rx, SkScalar ry, const SkPaint& paint) { if (rx > 0 && ry > 0) { if (paint.canComputeFastBounds()) { SkRect storage; if (this->quickReject(paint.computeFastBounds(r, &storage), paint2EdgeType(&paint))) { return; } } SkPath path; path.addRoundRect(r, rx, ry, SkPath::kCW_Direction); this->drawPath(path, paint); } else { this->drawRect(r, paint); } } void SkCanvas::drawOval(const SkRect& oval, const SkPaint& paint) { if (paint.canComputeFastBounds()) { SkRect storage; if (this->quickReject(paint.computeFastBounds(oval, &storage), paint2EdgeType(&paint))) { return; } } SkPath path; path.addOval(oval); this->drawPath(path, paint); } void SkCanvas::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { if (SkScalarAbs(sweepAngle) >= SkIntToScalar(360)) { this->drawOval(oval, paint); } else { SkPath path; if (useCenter) { path.moveTo(oval.centerX(), oval.centerY()); } path.arcTo(oval, startAngle, sweepAngle, !useCenter); if (useCenter) { path.close(); } this->drawPath(path, paint); } } void SkCanvas::drawTextOnPathHV(const void* text, size_t byteLength, const SkPath& path, SkScalar hOffset, SkScalar vOffset, const SkPaint& paint) { SkMatrix matrix; matrix.setTranslate(hOffset, vOffset); this->drawTextOnPath(text, byteLength, path, &matrix, paint); } /////////////////////////////////////////////////////////////////////////////// void SkCanvas::drawPicture(SkPicture& picture) { int saveCount = save(); picture.draw(this); restoreToCount(saveCount); } void SkCanvas::drawShape(SkShape* shape) { // shape baseclass takes care of save/restore shape->draw(this); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// SkCanvas::LayerIter::LayerIter(SkCanvas* canvas, bool skipEmptyClips) { // need COMPILE_TIME_ASSERT SkASSERT(sizeof(fStorage) >= sizeof(SkDrawIter)); SkASSERT(canvas); fImpl = new (fStorage) SkDrawIter(canvas, skipEmptyClips); fDone = !fImpl->next(); } SkCanvas::LayerIter::~LayerIter() { fImpl->~SkDrawIter(); } void SkCanvas::LayerIter::next() { fDone = !fImpl->next(); } SkDevice* SkCanvas::LayerIter::device() const { return fImpl->getDevice(); } const SkMatrix& SkCanvas::LayerIter::matrix() const { return fImpl->getMatrix(); } const SkPaint& SkCanvas::LayerIter::paint() const { const SkPaint* paint = fImpl->getPaint(); if (NULL == paint) { paint = &fDefaultPaint; } return *paint; } const SkRegion& SkCanvas::LayerIter::clip() const { return fImpl->getClip(); } int SkCanvas::LayerIter::x() const { return fImpl->getX(); } int SkCanvas::LayerIter::y() const { return fImpl->getY(); }