/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/SKPBench.h" #include "include/core/SkSurface.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "tools/flags/CommandLineFlags.h" // These CPU tile sizes are not good per se, but they are similar to what Chrome uses. static DEFINE_int(CPUbenchTileW, 256, "Tile width used for CPU SKP playback."); static DEFINE_int(CPUbenchTileH, 256, "Tile height used for CPU SKP playback."); static DEFINE_int(GPUbenchTileW, 1600, "Tile width used for GPU SKP playback."); static DEFINE_int(GPUbenchTileH, 512, "Tile height used for GPU SKP playback."); SKPBench::SKPBench(const char* name, const SkPicture* pic, const SkIRect& clip, SkScalar scale, bool doLooping) : fPic(SkRef(pic)) , fClip(clip) , fScale(scale) , fName(name) , fDoLooping(doLooping) { fUniqueName.printf("%s_%.2g", name, scale); // Scale makes this unqiue for perf.skia.org traces. } SKPBench::~SKPBench() { for (int i = 0; i < fSurfaces.count(); ++i) { fSurfaces[i]->unref(); } } const char* SKPBench::onGetName() { return fName.c_str(); } const char* SKPBench::onGetUniqueName() { return fUniqueName.c_str(); } void SKPBench::onPerCanvasPreDraw(SkCanvas* canvas) { SkIRect bounds = canvas->getDeviceClipBounds(); bounds.intersect(fClip); bounds.intersect(fPic->cullRect().roundOut()); SkAssertResult(!bounds.isEmpty()); const bool gpu = canvas->recordingContext() != nullptr; int tileW = gpu ? FLAGS_GPUbenchTileW : FLAGS_CPUbenchTileW, tileH = gpu ? FLAGS_GPUbenchTileH : FLAGS_CPUbenchTileH; tileW = std::min(tileW, bounds.width()); tileH = std::min(tileH, bounds.height()); int xTiles = SkScalarCeilToInt(bounds.width() / SkIntToScalar(tileW)); int yTiles = SkScalarCeilToInt(bounds.height() / SkIntToScalar(tileH)); fSurfaces.reserve_back(xTiles * yTiles); fTileRects.setReserve(xTiles * yTiles); SkImageInfo ii = canvas->imageInfo().makeWH(tileW, tileH); for (int y = bounds.fTop; y < bounds.fBottom; y += tileH) { for (int x = bounds.fLeft; x < bounds.fRight; x += tileW) { const SkIRect tileRect = SkIRect::MakeXYWH(x, y, tileW, tileH); *fTileRects.append() = tileRect; fSurfaces.emplace_back(canvas->makeSurface(ii)); // Never want the contents of a tile to include stuff the parent // canvas clips out SkRect clip = SkRect::Make(bounds); clip.offset(-SkIntToScalar(tileRect.fLeft), -SkIntToScalar(tileRect.fTop)); fSurfaces.back()->getCanvas()->clipRect(clip); fSurfaces.back()->getCanvas()->setMatrix(canvas->getLocalToDevice()); fSurfaces.back()->getCanvas()->scale(fScale, fScale); } } } void SKPBench::onPerCanvasPostDraw(SkCanvas* canvas) { // Draw the last set of tiles into the main canvas in case we're // saving the images for (int i = 0; i < fTileRects.count(); ++i) { sk_sp image(fSurfaces[i]->makeImageSnapshot()); canvas->drawImage(image, SkIntToScalar(fTileRects[i].fLeft), SkIntToScalar(fTileRects[i].fTop)); } fSurfaces.reset(); fTileRects.rewind(); } bool SKPBench::isSuitableFor(Backend backend) { return backend != kNonRendering_Backend; } SkIPoint SKPBench::onGetSize() { return SkIPoint::Make(fClip.width(), fClip.height()); } void SKPBench::onDraw(int loops, SkCanvas* canvas) { SkASSERT(fDoLooping || 1 == loops); while (1) { this->drawPicture(); if (0 == --loops) { break; } auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext() : nullptr; // Ensure the GrContext doesn't combine ops across draw loops. if (direct) { direct->flushAndSubmit(); } } } void SKPBench::drawMPDPicture() { // TODO: remove me } void SKPBench::drawPicture() { for (int j = 0; j < fTileRects.count(); ++j) { const SkMatrix trans = SkMatrix::Translate(-fTileRects[j].fLeft / fScale, -fTileRects[j].fTop / fScale); fSurfaces[j]->getCanvas()->drawPicture(fPic.get(), &trans, nullptr); } for (int j = 0; j < fTileRects.count(); ++j) { fSurfaces[j]->flush(); } } #include "src/gpu/ganesh/GrGpu.h" static void draw_pic_for_stats(SkCanvas* canvas, GrDirectContext* dContext, const SkPicture* picture, SkTArray* keys, SkTArray* values) { dContext->priv().resetGpuStats(); dContext->priv().resetContextStats(); canvas->drawPicture(picture); dContext->flush(); dContext->priv().dumpGpuStatsKeyValuePairs(keys, values); dContext->priv().dumpCacheStatsKeyValuePairs(keys, values); dContext->priv().dumpContextStatsKeyValuePairs(keys, values); } void SKPBench::getGpuStats(SkCanvas* canvas, SkTArray* keys, SkTArray* values) { // we do a special single draw and then dump the key / value pairs auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext() : nullptr; if (!direct) { return; } // TODO refactor this out if we want to test other subclasses of skpbench direct->flushAndSubmit(); direct->freeGpuResources(); direct->resetContext(); direct->priv().getGpu()->resetShaderCacheForTesting(); draw_pic_for_stats(canvas, direct, fPic.get(), keys, values); } bool SKPBench::getDMSAAStats(GrRecordingContext* rContext) { if (!rContext || !rContext->asDirectContext()) { return false; } // Clear the current DMSAA stats then do a single tiled draw that resets them to the specific // values for our SKP. rContext->asDirectContext()->flushAndSubmit(); rContext->priv().dmsaaStats() = {}; this->drawPicture(); // Draw tiled for DMSAA stats. rContext->asDirectContext()->flush(); return true; }