/* * Copyright 2019 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #if SK_SUPPORT_GPU #include "GrClip.h" #include "GrRect.h" #include "GrRenderTargetContextPriv.h" #include "Resources.h" #include "SkFont.h" #include "SkGr.h" #include "SkGradientShader.h" #include "SkImage_Base.h" #include "SkLineClipper.h" #include // This GM mimics the draw calls used by complex compositors that focus on drawing rectangles // and quadrilaterals with per-edge AA, with complex images, effects, and seamless tiling. // It will be updated to reflect the patterns seen in Chromium's SkiaRenderer. It is currently // restricted to adding draw ops directly in Ganesh since there is no fully-specified public API. static constexpr SkScalar kTileWidth = 40; static constexpr SkScalar kTileHeight = 30; static constexpr int kRowCount = 4; static constexpr int kColCount = 3; // To mimic Chromium's BSP clipping strategy, a set of three lines formed by triangle edges // of the below points are used to clip against the regular tile grid. The tile grid occupies // a 120 x 120 rectangle (40px * 3 cols by 30px * 4 rows). static constexpr SkPoint kClipP1 = {1.75f * kTileWidth, 0.8f * kTileHeight}; static constexpr SkPoint kClipP2 = {0.6f * kTileWidth, 2.f * kTileHeight}; static constexpr SkPoint kClipP3 = {2.9f * kTileWidth, 3.5f * kTileHeight}; /////////////////////////////////////////////////////////////////////////////////////////////// // Utilities for operating on lines and tiles /////////////////////////////////////////////////////////////////////////////////////////////// // p0 and p1 form a segment contained the tile grid, so extends them by a large enough margin // that the output points stored in 'line' are outside the tile grid (thus effectively infinite). static void clipping_line_segment(const SkPoint& p0, const SkPoint& p1, SkPoint line[2]) { SkVector v = p1 - p0; // 10f was chosen as a balance between large enough to scale the currently set clip // points outside of the tile grid, but small enough to preserve precision. line[0] = p0 - v * 10.f; line[1] = p1 + v * 10.f; } // Returns true if line segment (p0-p1) intersects with line segment (l0-l1); if true is returned, // the intersection point is stored in 'intersect'. static bool intersect_line_segments(const SkPoint& p0, const SkPoint& p1, const SkPoint& l0, const SkPoint& l1, SkPoint* intersect) { static constexpr SkScalar kHorizontalTolerance = 0.01f; // Pretty conservative // Use doubles for accuracy, since the clipping strategy used below can create T // junctions, and lower precision could artificially create gaps double pY = (double) p1.fY - (double) p0.fY; double pX = (double) p1.fX - (double) p0.fX; double lY = (double) l1.fY - (double) l0.fY; double lX = (double) l1.fX - (double) l0.fX; double plY = (double) p0.fY - (double) l0.fY; double plX = (double) p0.fX - (double) l0.fX; if (SkScalarNearlyZero(pY, kHorizontalTolerance)) { if (SkScalarNearlyZero(lY, kHorizontalTolerance)) { // Two horizontal lines return false; } else { // Recalculate but swap p and l return intersect_line_segments(l0, l1, p0, p1, intersect); } } // Up to now, the line segments do not form an invalid intersection double lNumerator = plX * pY - plY * pX; double lDenom = lX * pY - lY * pX; if (SkScalarNearlyZero(lDenom)) { // Parallel or identical return false; } // Calculate alphaL that provides the intersection point along (l0-l1), e.g. l0+alphaL*(l1-l0) double alphaL = lNumerator / lDenom; if (alphaL < 0.0 || alphaL > 1.0) { // Outside of the l segment return false; } // Calculate alphaP from the valid alphaL (since it could be outside p segment) // double alphaP = (alphaL * l.fY - pl.fY) / p.fY; double alphaP = (alphaL * lY - plY) / pY; if (alphaP < 0.0 || alphaP > 1.0) { // Outside of p segment return false; } // Is valid, so calculate the actual intersection point *intersect = l1 * SkScalar(alphaL) + l0 * SkScalar(1.0 - alphaL); return true; } // Draw a line through the two points, outset by a fixed length in screen space static void draw_outset_line(SkCanvas* canvas, const SkMatrix& local, const SkPoint pts[2], const SkPaint& paint) { static constexpr SkScalar kLineOutset = 10.f; SkPoint mapped[2]; local.mapPoints(mapped, pts, 2); SkVector v = mapped[1] - mapped[0]; v.setLength(v.length() + kLineOutset); canvas->drawLine(mapped[1] - v, mapped[0] + v, paint); } // Draw grid of red lines at interior tile boundaries. static void draw_tile_boundaries(SkCanvas* canvas, const SkMatrix& local) { SkPaint paint; paint.setAntiAlias(true); paint.setColor(SK_ColorRED); paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(0.f); for (int x = 1; x < kColCount; ++x) { SkPoint pts[] = {{x * kTileWidth, 0}, {x * kTileWidth, kRowCount * kTileHeight}}; draw_outset_line(canvas, local, pts, paint); } for (int y = 1; y < kRowCount; ++y) { SkPoint pts[] = {{0, y * kTileHeight}, {kTileWidth * kColCount, y * kTileHeight}}; draw_outset_line(canvas, local, pts, paint); } } // Draw the arbitrary clipping/split boundaries that intersect the tile grid as green lines static void draw_clipping_boundaries(SkCanvas* canvas, const SkMatrix& local) { SkPaint paint; paint.setAntiAlias(true); paint.setColor(SK_ColorGREEN); paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(0.f); // Clip the "infinite" line segments to a rectangular region outside the tile grid SkRect border = SkRect::MakeWH(kTileWidth * kColCount, kTileHeight * kRowCount); // Draw p1 to p2 SkPoint line[2]; SkPoint clippedLine[2]; clipping_line_segment(kClipP1, kClipP2, line); SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine)); draw_outset_line(canvas, local, clippedLine, paint); // Draw p2 to p3 clipping_line_segment(kClipP2, kClipP3, line); SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine)); draw_outset_line(canvas, local, clippedLine, paint); // Draw p3 to p1 clipping_line_segment(kClipP3, kClipP1, line); SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine)); draw_outset_line(canvas, local, clippedLine, paint); } static void draw_text(SkCanvas* canvas, const char* text) { canvas->drawString(text, 0, 0, SkFont(nullptr, 12), SkPaint()); } ///////////////////////////////////////////////////////////////////////////////////////////////// // Abstraction for rendering a possibly clipped tile, that can apply different effects to mimic // the Chromium quad types, and a generic GM template to arrange renderers x transforms in a grid ///////////////////////////////////////////////////////////////////////////////////////////////// class TileRenderer : public SkRefCntBase { public: virtual ~TileRenderer() {} // Draw the base rect, possibly clipped by 'clip' if that is not null. The edges to antialias // are specified in 'edgeAA' (to make manipulation easier than an unsigned bitfield). 'tileID' // represents the location of rect within the tile grid, 'quadID' is the unique ID of the clip // region within the tile (reset for each tile). // // The edgeAA order matches that of clip, so it refers to top, right, bottom, left. virtual void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) = 0; virtual void drawBanner(SkCanvas* canvas) = 0; virtual void drawTiles(SkCanvas* canvas, GrContext* context, GrRenderTargetContext* rtc) { // TODO (michaelludwig) - once the quad APIs are in SkCanvas, drop these // cached fields, which drawTile() needs fContext = context; fRTC = rtc; // All three lines in a list SkPoint lines[6]; clipping_line_segment(kClipP1, kClipP2, lines); clipping_line_segment(kClipP2, kClipP3, lines + 2); clipping_line_segment(kClipP3, kClipP1, lines + 4); bool edgeAA[4]; int tileID = 0; for (int i = 0; i < kRowCount; ++i) { for (int j = 0; j < kColCount; ++j) { // The unclipped tile geometry SkRect tile = SkRect::MakeXYWH(j * kTileWidth, i * kTileHeight, kTileWidth, kTileHeight); // Base edge AA flags if there are no clips; clipped lines will only turn off edges edgeAA[0] = i == 0; // Top edgeAA[1] = j == kColCount - 1; // Right edgeAA[2] = i == kRowCount - 1; // Bottom edgeAA[3] = j == 0; // Left // Now clip against the 3 lines formed by kClipPx and split into general purpose // quads as needed. int quadCount = 0; this->clipTile(canvas, tileID, tile, nullptr, edgeAA, lines, 3, &quadCount); tileID++; } } } protected: // Remembered for convenience in drawTile, set by drawTiles() GrContext* fContext; GrRenderTargetContext* fRTC; GrQuadAAFlags maskToFlags(const bool edgeAA[4]) const { GrQuadAAFlags flags = GrQuadAAFlags::kNone; flags |= edgeAA[0] ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone; flags |= edgeAA[1] ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone; flags |= edgeAA[2] ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone; flags |= edgeAA[3] ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone; return flags; } // Recursively splits the quadrilateral against the segments stored in 'lines', which must be // 2 * lineCount long. Increments 'quadCount' for each split quadrilateral, and invokes the // drawTile at leaves. void clipTile(SkCanvas* canvas, int tileID, const SkRect& baseRect, const SkPoint quad[4], const bool edgeAA[4], const SkPoint lines[], int lineCount, int* quadCount) { if (lineCount == 0) { // No lines, so end recursion by drawing the tile. If the tile was never split then // 'quad' remains null so that drawTile() can differentiate how it should draw. this->drawTile(canvas, baseRect, quad, edgeAA, tileID, *quadCount); *quadCount = *quadCount + 1; return; } static constexpr int kTL = 0; // Top-left point index in points array static constexpr int kTR = 1; // Top-right point index in points array static constexpr int kBR = 2; // Bottom-right point index in points array static constexpr int kBL = 3; // Bottom-left point index in points array static constexpr int kS0 = 4; // First split point index in points array static constexpr int kS1 = 5; // Second split point index in points array SkPoint points[6]; if (quad) { // Copy the original 4 points into set of points to consider for (int i = 0; i < 4; ++i) { points[i] = quad[i]; } } else { // Haven't been split yet, so fill in based on the rect baseRect.toQuad(points); } // Consider the first line against the 4 quad edges in tile, which should have 0,1, or 2 // intersection points since the tile is convex. int splitIndices[2]; // Edge that was intersected int intersectionCount = 0; for (int i = 0; i < 4; ++i) { SkPoint intersect; if (intersect_line_segments(points[i], points[i == 3 ? 0 : i + 1], lines[0], lines[1], &intersect)) { // If the intersected point is the same as the last found intersection, the line // runs through a vertex, so don't double count it bool duplicate = false; for (int j = 0; j < intersectionCount; ++j) { if (SkScalarNearlyZero((intersect - points[kS0 + j]).length())) { duplicate = true; break; } } if (!duplicate) { points[kS0 + intersectionCount] = intersect; splitIndices[intersectionCount] = i; intersectionCount++; } } } if (intersectionCount < 2) { // Either the first line never intersected the quad (count == 0), or it intersected at a // single vertex without going through quad area (count == 1), so check next line return this->clipTile( canvas, tileID, baseRect, quad, edgeAA, lines + 2, lineCount - 1, quadCount); } SkASSERT(intersectionCount == 2); // Split the tile points into 2+ sub quads and recurse to the next lines, which may or may // not further split the tile. Since the configurations are relatively simple, the possible // splits are hardcoded below; subtile quad orderings are such that the sub tiles remain in // clockwise order and match expected edges for QuadAAFlags. subtile indices refer to the // 6-element 'points' array. SkSTArray<3, std::array> subtiles; int s2 = -1; // Index of an original vertex chosen for a artificial split if (splitIndices[1] - splitIndices[0] == 2) { // Opposite edges, so the split trivially forms 2 sub quads if (splitIndices[0] == 0) { subtiles.push_back({{kTL, kS0, kS1, kBL}}); subtiles.push_back({{kS0, kTR, kBR, kS1}}); } else { subtiles.push_back({{kTL, kTR, kS0, kS1}}); subtiles.push_back({{kS1, kS0, kBR, kBL}}); } } else { // Adjacent edges, which makes for a more complicated split, since it forms a degenerate // quad (triangle) and a pentagon that must be artificially split. The pentagon is split // using one of the original vertices (remembered in 's2'), which adds an additional // degenerate quad, but ensures there are no T-junctions. switch(splitIndices[0]) { case 0: // Could be connected to edge 1 or edge 3 if (splitIndices[1] == 1) { s2 = kBL; subtiles.push_back({{kS0, kTR, kS1, kS1}}); // degenerate subtiles.push_back({{kTL, kS0, kBL, kBL}}); // degenerate subtiles.push_back({{kS0, kS1, kBR, kBL}}); } else { SkASSERT(splitIndices[1] == 3); s2 = kBR; subtiles.push_back({{kTL, kS0, kS1, kS1}}); // degenerate subtiles.push_back({{kS1, kS1, kBR, kBL}}); // degenerate subtiles.push_back({{kS0, kTR, kBR, kS1}}); } break; case 1: // Edge 0 handled above, should only be connected to edge 2 SkASSERT(splitIndices[1] == 2); s2 = kTL; subtiles.push_back({{kS0, kS0, kBR, kS1}}); // degenerate subtiles.push_back({{kTL, kTR, kS0, kS0}}); // degenerate subtiles.push_back({{kTL, kS0, kS1, kBL}}); break; case 2: // Edge 1 handled above, should only be connected to edge 3 SkASSERT(splitIndices[1] == 3); s2 = kTR; subtiles.push_back({{kS1, kS1, kS0, kBL}}); // degenerate subtiles.push_back({{kTR, kTR, kBR, kS0}}); // degenerate subtiles.push_back({{kTL, kTR, kS0, kS1}}); break; case 3: // Fall through, an adjacent edge split that hits edge 3 should have first found // been found with edge 0 or edge 2 for the other end default: SkASSERT(false); return; } } SkPoint sub[4]; bool subAA[4]; for (int i = 0; i < subtiles.count(); ++i) { // Fill in the quad points and update edge AA rules for new interior edges for (int j = 0; j < 4; ++j) { int p = subtiles[i][j]; sub[j] = points[p]; int np = j == 3 ? subtiles[i][0] : subtiles[i][j + 1]; // The "new" edges are the edges that connect between the two split points or // between a split point and the chosen s2 point. Otherwise the edge remains aligned // with the original shape, so should preserve the AA setting. if ((p == s2 || p >= kS0) && (np == s2 || np >= kS0)) { // New edge subAA[j] = false; } else { // The subtiles indices were arranged so that their edge ordering was still top, // right, bottom, left so 'j' can be used to access edgeAA subAA[j] = edgeAA[j]; } } // Split the sub quad with the next line this->clipTile(canvas, tileID, baseRect, sub, subAA, lines + 2, lineCount - 1, quadCount); } } }; class CompositorGM : public skiagm::GpuGM { public: CompositorGM(const char* name, sk_sp renderer) : fName(name) { fRenderers.push_back(std::move(renderer)); } CompositorGM(const char* name, sk_sp r1, sk_sp r2) : fName(name) { fRenderers.push_back(std::move(r1)); fRenderers.push_back(std::move(r2)); } CompositorGM(const char* name, sk_sp r1, sk_sp r2, sk_sp r3) : fName(name) { fRenderers.push_back(std::move(r1)); fRenderers.push_back(std::move(r2)); fRenderers.push_back(std::move(r3)); } // 3 renderer modes is the max any GM needs right now protected: SkISize onISize() override { // The GM draws a grid of renderers (rows) x transforms (col). Within each cell, the // renderer draws the transformed tile grid, which is approximately // (kColCount*kTileWidth, kRowCount*kTileHeight), although it has additional line // visualizations and can be transformed outside of those rectangular bounds (i.e. persp), // so pad the cell dimensions to be conservative. Must also account for the banner text. static constexpr SkScalar kCellWidth = 1.3f * kColCount * kTileWidth; static constexpr SkScalar kCellHeight = 1.3f * kRowCount * kTileHeight; return SkISize::Make(SkScalarRoundToInt(kCellWidth * kMatrixCount + 175.f), SkScalarRoundToInt(kCellHeight * fRenderers.count() + 75.f)); } SkString onShortName() override { SkString fullName; fullName.appendf("compositor_quads_%s", fName.c_str()); return fullName; } void onOnceBeforeDraw() override { this->configureMatrices(); } void onDraw(GrContext* ctx, GrRenderTargetContext* rtc, SkCanvas* canvas) override { static constexpr SkScalar kGap = 40.f; static constexpr SkScalar kBannerWidth = 120.f; static constexpr SkScalar kOffset = 15.f; // Print a row header canvas->save(); canvas->translate(kOffset, kGap + 0.5f * kRowCount * kTileHeight); for (int j = 0; j < fRenderers.count(); ++j) { fRenderers[j]->drawBanner(canvas); canvas->translate(0.f, kGap + kRowCount * kTileHeight); } canvas->restore(); canvas->translate(kOffset + kBannerWidth, kOffset); for (int i = 0; i < fMatrices.count(); ++i) { canvas->save(); draw_text(canvas, fMatrixNames[i].c_str()); canvas->translate(0.f, kGap); for (int j = 0; j < fRenderers.count(); ++j) { canvas->save(); draw_tile_boundaries(canvas, fMatrices[i]); draw_clipping_boundaries(canvas, fMatrices[i]); canvas->concat(fMatrices[i]); fRenderers[j]->drawTiles(canvas, ctx, rtc); canvas->restore(); // And advance to the next row canvas->translate(0.f, kGap + kRowCount * kTileHeight); } // Reset back to the left edge canvas->restore(); // And advance to the next column canvas->translate(kGap + kColCount * kTileWidth, 0.f); } } private: static constexpr int kMatrixCount = 5; SkTArray> fRenderers; SkTArray fMatrices; SkTArray fMatrixNames; SkString fName; void configureMatrices() { fMatrices.reset(); fMatrixNames.reset(); fMatrices.push_back_n(kMatrixCount); // Identity fMatrices[0].setIdentity(); fMatrixNames.push_back(SkString("Identity")); // Translate/scale fMatrices[1].setTranslate(5.5f, 20.25f); fMatrices[1].postScale(.9f, .7f); fMatrixNames.push_back(SkString("T+S")); // Rotation fMatrices[2].setRotate(20.0f); fMatrices[2].preTranslate(15.f, -20.f); fMatrixNames.push_back(SkString("Rotate")); // Skew fMatrices[3].setSkew(.5f, .25f); fMatrices[3].preTranslate(-30.f, 0.f); fMatrixNames.push_back(SkString("Skew")); // Perspective SkPoint src[4]; SkRect::MakeWH(kColCount * kTileWidth, kRowCount * kTileHeight).toQuad(src); SkPoint dst[4] = {{0, 0}, {kColCount * kTileWidth + 10.f, 15.f}, {kColCount * kTileWidth - 28.f, kRowCount * kTileHeight + 40.f}, {25.f, kRowCount * kTileHeight - 15.f}}; SkAssertResult(fMatrices[4].setPolyToPoly(src, dst, 4)); fMatrices[4].preTranslate(0.f, 10.f); fMatrixNames.push_back(SkString("Perspective")); SkASSERT(fMatrices.count() == fMatrixNames.count()); } typedef skiagm::GM INHERITED; }; //////////////////////////////////////////////////////////////////////////////////////////////// // Implementations of TileRenderer that color the clipped tiles in various ways //////////////////////////////////////////////////////////////////////////////////////////////// class DebugTileRenderer : public TileRenderer { public: static sk_sp Make() { // Since aa override is disabled, the quad flags arg doesn't matter. return sk_sp(new DebugTileRenderer(GrQuadAAFlags::kAll, false)); } static sk_sp MakeAA() { return sk_sp(new DebugTileRenderer(GrQuadAAFlags::kAll, true)); } static sk_sp MakeNonAA() { return sk_sp(new DebugTileRenderer(GrQuadAAFlags::kNone, true)); } void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) override { // Colorize the tile based on its grid position and quad ID int i = tileID / kColCount; int j = tileID % kColCount; SkPMColor4f c = {(i + 1.f) / kRowCount, (j + 1.f) / kColCount, .4f, 1.f}; float alpha = quadID / 10.f; c.fR = c.fR * (1 - alpha) + alpha; c.fG = c.fG * (1 - alpha) + alpha; c.fB = c.fB * (1 - alpha) + alpha; c.fA = c.fA * (1 - alpha) + alpha; GrPaint paint; paint.setColor4f(c); GrQuadAAFlags aaFlags = fEnableAAOverride ? fAAOverride : this->maskToFlags(edgeAA); if (clip) { fRTC->fillQuadWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, aaFlags, canvas->getTotalMatrix(), clip, nullptr); } else { fRTC->fillRectWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, aaFlags, canvas->getTotalMatrix(), rect); } } void drawBanner(SkCanvas* canvas) override { canvas->save(); draw_text(canvas, "Edge AA"); canvas->translate(0.f, 15.f); SkString config; static const char* kFormat = "Ext(%s) - Int(%s)"; if (fEnableAAOverride) { SkASSERT(fAAOverride == GrQuadAAFlags::kAll || fAAOverride == GrQuadAAFlags::kNone); if (fAAOverride == GrQuadAAFlags::kAll) { config.appendf(kFormat, "yes", "yes"); } else { config.appendf(kFormat, "no", "no"); } } else { config.appendf(kFormat, "yes", "no"); } canvas->translate(0.f, 6.f); draw_text(canvas, config.c_str()); canvas->restore(); } private: GrQuadAAFlags fAAOverride; bool fEnableAAOverride; DebugTileRenderer(GrQuadAAFlags aa, bool enableAAOverrde) : fAAOverride(aa) , fEnableAAOverride(enableAAOverrde) {} typedef TileRenderer INHERITED; }; class SolidColorRenderer : public TileRenderer { public: static sk_sp Make(const SkPMColor4f& color) { return sk_sp(new SolidColorRenderer(color)); } void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) override { GrPaint paint; paint.setColor4f(fColor); if (clip) { fRTC->fillQuadWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, this->maskToFlags(edgeAA), canvas->getTotalMatrix(), clip, nullptr); } else { fRTC->fillRectWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, this->maskToFlags(edgeAA), canvas->getTotalMatrix(), rect); } } void drawBanner(SkCanvas* canvas) override { draw_text(canvas, "Solid Color"); } private: SkPMColor4f fColor; SolidColorRenderer(const SkPMColor4f& color) : fColor(color) {} typedef TileRenderer INHERITED; }; class GradientRenderer : public TileRenderer { public: static sk_sp MakeSeamless() { return sk_sp(new GradientRenderer(false)); } static sk_sp MakeLocal() { return sk_sp(new GradientRenderer(true)); } void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) override { GrPaint paint; SkPaintToGrPaint(fContext, fRTC->colorSpaceInfo(), fGradient, canvas->getTotalMatrix(), &paint); SkRect localRect = SkRect::MakeWH(kTileWidth, kTileHeight); SkPoint localQuad[4]; if (fLocal && clip) { GrMapRectPoints(rect, localRect, clip, localQuad, 4); } if (clip) { fRTC->fillQuadWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, this->maskToFlags(edgeAA), canvas->getTotalMatrix(), clip, fLocal ? localQuad : nullptr); } else { fRTC->fillRectWithEdgeAA(GrNoClip(), std::move(paint), GrAA::kYes, this->maskToFlags(edgeAA), canvas->getTotalMatrix(), rect, fLocal ? &localRect : nullptr); } } void drawBanner(SkCanvas* canvas) override { canvas->save(); draw_text(canvas, "Gradient"); canvas->translate(0.f, 15.f); if (fLocal) { draw_text(canvas, "Local"); } else { draw_text(canvas, "Seamless"); } canvas->restore(); } private: SkPaint fGradient; bool fLocal; GradientRenderer(bool local) : fLocal(local) { static constexpr SkPoint pts[] = { {0.f, 0.f}, {0.25f * kTileWidth, 0.25f * kTileHeight} }; static constexpr SkColor colors[] = { SK_ColorBLUE, SK_ColorWHITE }; auto gradient = SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkShader::kMirror_TileMode); fGradient.setShader(gradient); } typedef TileRenderer INHERITED; }; static SkRect get_image_local_rect(const sk_sp image, const SkRect& rect) { // This acts like the whole image is rendered over the entire tile grid, so derive local // coordinates from 'rect', based on the grid to image transform. SkMatrix gridToImage = SkMatrix::MakeRectToRect(SkRect::MakeWH(kColCount * kTileWidth, kRowCount * kTileHeight), SkRect::MakeWH(image->width(), image->height()), SkMatrix::kFill_ScaleToFit); return gridToImage.mapRect(rect); } class TextureRenderer : public TileRenderer { public: static sk_sp Make(sk_sp image) { return sk_sp(new TextureRenderer(image)); } void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) override { SkPMColor4f color = {1.f, 1.f, 1.f, 1.f}; SkRect localRect = get_image_local_rect(fImage, rect); fImage = fImage->makeTextureImage(fContext, nullptr); sk_sp proxy = as_IB(fImage)->asTextureProxyRef(); SkASSERT(proxy); if (clip) { SkPoint localQuad[4]; GrMapRectPoints(rect, localRect, clip, localQuad, 4); fRTC->drawTextureQuad(GrNoClip(), std::move(proxy), GrSamplerState::Filter::kBilerp, SkBlendMode::kSrcOver, color, localQuad, clip, GrAA::kYes, this->maskToFlags(edgeAA), nullptr, canvas->getTotalMatrix(), nullptr); } else { fRTC->drawTexture(GrNoClip(), std::move(proxy), GrSamplerState::Filter::kBilerp, SkBlendMode::kSrcOver, color, localRect, rect, GrAA::kYes, this->maskToFlags(edgeAA), SkCanvas::kFast_SrcRectConstraint, canvas->getTotalMatrix(), nullptr); } } void drawBanner(SkCanvas* canvas) override { draw_text(canvas, "Texture"); } private: sk_sp fImage; TextureRenderer(sk_sp image) : fImage(image) {} typedef TileRenderer INHERITED; }; // Looks like TextureRenderer, but bundles tiles into drawTextureSet calls class TextureSetRenderer : public TileRenderer { public: static sk_sp Make(sk_sp image) { return sk_sp(new TextureSetRenderer(image)); } void drawTiles(SkCanvas* canvas, GrContext* ctx, GrRenderTargetContext* rtc) override { this->INHERITED::drawTiles(canvas, ctx, rtc); // Push the last tile set this->drawAndReset(canvas); } void drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4], int tileID, int quadID) override { // Submit the last batch if we've moved on to a new tile if (tileID != fCurrentTileID) { this->drawAndReset(canvas); } SkASSERT((fCurrentTileID < 0 && fDstClips.count() == 0 && fDstClipIndices.count() == 0 && fSetEntries.count() == 0) || (fCurrentTileID == tileID && fSetEntries.count() > 0)); // Now don't actually draw the tile, accumulate it in the growing entry set fCurrentTileID = tileID; int clipIndex = -1; if (clip) { // Record the four points into fDstClips and get the pointer to the first in the array clipIndex = fDstClips.count(); fDstClips.push_back_n(4, clip); } SkRect localRect = get_image_local_rect(fImage, rect); fImage = fImage->makeTextureImage(fContext, nullptr); sk_sp proxy = as_IB(fImage)->asTextureProxyRef(); // drawTextureSet automatically derives appropriate local quad from localRect if clipPtr // is not null. fSetEntries.push_back({proxy, localRect, rect, nullptr, 1.f, this->maskToFlags(edgeAA)}); fDstClipIndices.push_back(clipIndex); } void drawBanner(SkCanvas* canvas) override { draw_text(canvas, "Texture Set"); } private: sk_sp fImage; SkTArray fDstClips; // Since fDstClips will reallocate as needed, can't get the final pointer for the entries' // fDstClip values until submitting the entire set SkTArray fDstClipIndices; SkTArray fSetEntries; int fCurrentTileID; TextureSetRenderer(sk_sp image) : fImage(image) , fCurrentTileID(-1) {} void drawAndReset(SkCanvas* canvas) { // Early out if there's nothing to draw if (fSetEntries.count() == 0) { SkASSERT(fCurrentTileID < 0 && fDstClips.count() == 0 && fDstClipIndices.count() == 0); return; } // Fill in fDstClip in the entries now that fDstClips' storage won't change until after the // draw is finished. // NOTE: The eventual API in SkGpuDevice will make easier to collect // SkCanvas::ImageSetEntries and dst clips without this extra work, but also internally maps // very cleanly on to the TextureSetEntry fDstClip approach. SkASSERT(fDstClipIndices.count() == fSetEntries.count()); for (int i = 0; i < fSetEntries.count(); ++i) { if (fDstClipIndices[i] >= 0) { fSetEntries[i].fDstClip = &fDstClips[fDstClipIndices[i]]; } } // Send to GPU fRTC->drawTextureSet(GrNoClip(), fSetEntries.begin(), fSetEntries.count(), GrSamplerState::Filter::kBilerp, SkBlendMode::kSrcOver, GrAA::kYes, canvas->getTotalMatrix(), nullptr); // Reset for next tile fCurrentTileID = -1; fDstClips.reset(); fDstClipIndices.reset(); fSetEntries.reset(); } typedef TileRenderer INHERITED; }; DEF_GM(return new CompositorGM("debug", DebugTileRenderer::Make(), DebugTileRenderer::MakeAA(), DebugTileRenderer::MakeNonAA());) DEF_GM(return new CompositorGM("color", SolidColorRenderer::Make({.2f, .8f, .3f, 1.f}))); DEF_GM(return new CompositorGM("shader", GradientRenderer::MakeSeamless(), GradientRenderer::MakeLocal())); DEF_GM(return new CompositorGM("image", TextureRenderer::Make(GetResourceAsImage("images/mandrill_512.png")), TextureSetRenderer::Make(GetResourceAsImage("images/mandrill_512.png")))); #endif // SK_SUPPORT_GPU