/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorSpace.h" #include "include/core/SkDeferredDisplayListRecorder.h" #include "include/core/SkImage.h" #include "include/core/SkImageInfo.h" #include "include/core/SkPaint.h" #include "include/core/SkPromiseImageTexture.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceCharacterization.h" #include "include/core/SkSurfaceProps.h" #include "include/core/SkTypes.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrContext.h" #include "include/gpu/GrContextThreadSafeProxy.h" #include "include/gpu/GrTypes.h" #include "include/gpu/gl/GrGLTypes.h" #include "include/private/GrTypesPriv.h" #include "include/private/SkDeferredDisplayList.h" #include "src/core/SkDeferredDisplayListPriv.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrRenderTargetContext.h" #include "src/gpu/GrRenderTargetProxy.h" #include "src/gpu/GrTextureProxy.h" #include "src/gpu/SkGpuDevice.h" #include "src/gpu/gl/GrGLDefines.h" #include "src/image/SkImage_GpuBase.h" #include "src/image/SkSurface_Gpu.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/gpu/GrContextFactory.h" #include #include #include #ifdef SK_VULKAN #include "src/gpu/vk/GrVkCaps.h" #endif class SurfaceParameters { public: static const int kNumParams = 12; static const int kSampleCount = 5; static const int kMipMipCount = 8; static const int kFBO0Count = 9; static const int kProtectedCount = 11; SurfaceParameters(GrContext* context) : fBackend(context->backend()) , fWidth(64) , fHeight(64) , fOrigin(kTopLeft_GrSurfaceOrigin) , fColorType(kRGBA_8888_SkColorType) , fColorSpace(SkColorSpace::MakeSRGB()) , fSampleCount(1) , fSurfaceProps(0x0, kUnknown_SkPixelGeometry) , fShouldCreateMipMaps(true) , fUsesGLFBO0(false) , fIsTextureable(true) , fIsProtected(GrProtected::kNo) { #ifdef SK_VULKAN if (GrBackendApi::kVulkan == context->backend()) { const GrVkCaps* vkCaps = (const GrVkCaps*) context->priv().caps(); fIsProtected = GrProtected(vkCaps->supportsProtectedMemory()); } #endif } int sampleCount() const { return fSampleCount; } void setColorType(SkColorType ct) { fColorType = ct; } SkColorType colorType() const { return fColorType; } void setColorSpace(sk_sp cs) { fColorSpace = std::move(cs); } void setTextureable(bool isTextureable) { fIsTextureable = isTextureable; } void setShouldCreateMipMaps(bool shouldCreateMipMaps) { fShouldCreateMipMaps = shouldCreateMipMaps; } // Modify the SurfaceParameters in just one way void modify(int i) { switch (i) { case 0: fWidth = 63; break; case 1: fHeight = 63; break; case 2: fOrigin = kBottomLeft_GrSurfaceOrigin; break; case 3: fColorType = kRGBA_F16_SkColorType; break; case 4: // This just needs to be a colorSpace different from that returned by MakeSRGB(). // In this case we just change the gamut. fColorSpace = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kAdobeRGB); break; case kSampleCount: fSampleCount = 4; break; case 6: fSurfaceProps = SkSurfaceProps(0x0, kRGB_H_SkPixelGeometry); break; case 7: fSurfaceProps = SkSurfaceProps(SkSurfaceProps::kUseDeviceIndependentFonts_Flag, kUnknown_SkPixelGeometry); break; case 8: fShouldCreateMipMaps = false; break; case 9: if (GrBackendApi::kOpenGL == fBackend) { fUsesGLFBO0 = true; fShouldCreateMipMaps = false; // needs to changed in tandem w/ textureability fIsTextureable = false; } break; case 10: fShouldCreateMipMaps = false; // needs to changed in tandem w/ textureability fIsTextureable = false; break; case 11: fIsProtected = GrProtected::kYes == fIsProtected ? GrProtected::kNo : GrProtected::kYes; break; } } SkSurfaceCharacterization createCharacterization(GrContext* context) const { size_t maxResourceBytes = context->getResourceCacheLimit(); if (!context->colorTypeSupportedAsSurface(fColorType)) { return SkSurfaceCharacterization(); } // Note that Ganesh doesn't make use of the SkImageInfo's alphaType SkImageInfo ii = SkImageInfo::Make(fWidth, fHeight, fColorType, kPremul_SkAlphaType, fColorSpace); GrBackendFormat backendFormat = context->defaultBackendFormat(fColorType, GrRenderable::kYes); if (!backendFormat.isValid()) { return SkSurfaceCharacterization(); } SkSurfaceCharacterization c = context->threadSafeProxy()->createCharacterization( maxResourceBytes, ii, backendFormat, fSampleCount, fOrigin, fSurfaceProps, fShouldCreateMipMaps, fUsesGLFBO0, fIsTextureable, fIsProtected); return c; } // Create a DDL whose characterization captures the current settings std::unique_ptr createDDL(GrContext* context) const { SkSurfaceCharacterization c = this->createCharacterization(context); SkAssertResult(c.isValid()); SkDeferredDisplayListRecorder r(c); SkCanvas* canvas = r.getCanvas(); if (!canvas) { return nullptr; } canvas->drawRect(SkRect::MakeXYWH(10, 10, 10, 10), SkPaint()); return r.detach(); } // Create the surface with the current set of parameters sk_sp make(GrContext* context, GrBackendTexture* backend) const { const SkSurfaceCharacterization c = this->createCharacterization(context); GrMipMapped mipmapped = !fIsTextureable ? GrMipMapped::kNo : GrMipMapped(fShouldCreateMipMaps); if (fUsesGLFBO0) { if (GrBackendApi::kOpenGL != context->backend()) { return nullptr; } GrGLFramebufferInfo fboInfo; fboInfo.fFBOID = 0; fboInfo.fFormat = GR_GL_RGBA8; static constexpr int kStencilBits = 8; GrBackendRenderTarget backendRT(fWidth, fHeight, 1, kStencilBits, fboInfo); if (!backendRT.isValid()) { return nullptr; } sk_sp result = SkSurface::MakeFromBackendRenderTarget(context, backendRT, fOrigin, fColorType, fColorSpace, &fSurfaceProps); SkASSERT(result->isCompatible(c)); return result; } *backend = context->createBackendTexture(fWidth, fHeight, fColorType, SkColors::kTransparent, mipmapped, GrRenderable::kYes, fIsProtected); if (!backend->isValid()) { return nullptr; } // Even if a characterization couldn't be constructed we want to soldier on to make // sure that surface creation will/would've also failed SkASSERT(!c.isValid() || c.isCompatible(*backend)); sk_sp surface; if (!fIsTextureable) { // Create a surface w/ the current parameters but make it non-textureable surface = SkSurface::MakeFromBackendTextureAsRenderTarget( context, *backend, fOrigin, fSampleCount, fColorType, fColorSpace, &fSurfaceProps); } else { surface = SkSurface::MakeFromBackendTexture( context, *backend, fOrigin, fSampleCount, fColorType, fColorSpace, &fSurfaceProps); } if (!surface) { SkASSERT(!c.isValid()); this->cleanUpBackEnd(context, *backend); return nullptr; } SkASSERT(c.isValid()); SkASSERT(surface->isCompatible(c)); return surface; } void cleanUpBackEnd(GrContext* context, const GrBackendTexture& backend) const { context->deleteBackendTexture(backend); } private: GrBackendApi fBackend; int fWidth; int fHeight; GrSurfaceOrigin fOrigin; SkColorType fColorType; sk_sp fColorSpace; int fSampleCount; SkSurfaceProps fSurfaceProps; bool fShouldCreateMipMaps; bool fUsesGLFBO0; bool fIsTextureable; GrProtected fIsProtected; }; // Test out operator== && operator!= DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLOperatorEqTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); for (int i = 0; i < SurfaceParameters::kNumParams; ++i) { SurfaceParameters params1(context); params1.modify(i); SkSurfaceCharacterization char1 = params1.createCharacterization(context); if (!char1.isValid()) { continue; // can happen on some platforms (ChromeOS) } for (int j = 0; j < SurfaceParameters::kNumParams; ++j) { SurfaceParameters params2(context); params2.modify(j); SkSurfaceCharacterization char2 = params2.createCharacterization(context); if (!char2.isValid()) { continue; // can happen on some platforms (ChromeOS) } if (i == j) { REPORTER_ASSERT(reporter, char1 == char2); } else { REPORTER_ASSERT(reporter, char1 != char2); } } } { SurfaceParameters params(context); SkSurfaceCharacterization valid = params.createCharacterization(context); SkASSERT(valid.isValid()); SkSurfaceCharacterization inval1, inval2; SkASSERT(!inval1.isValid() && !inval2.isValid()); REPORTER_ASSERT(reporter, inval1 != inval2); REPORTER_ASSERT(reporter, valid != inval1); REPORTER_ASSERT(reporter, inval1 != valid); } } //////////////////////////////////////////////////////////////////////////////// // This tests SkSurfaceCharacterization/SkSurface compatibility void DDLSurfaceCharacterizationTestImpl(GrContext* context, skiatest::Reporter* reporter) { GrGpu* gpu = context->priv().getGpu(); const GrCaps* caps = context->priv().caps(); // Create a bitmap that we can readback into SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.allocPixels(imageInfo); std::unique_ptr ddl; // First, create a DDL using the stock SkSurface parameters { SurfaceParameters params(context); ddl = params.createDDL(context); SkAssertResult(ddl); // The DDL should draw into an SkSurface created with the same parameters GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { return; } REPORTER_ASSERT(reporter, s->draw(ddl.get())); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->flush(); gpu->testingOnly_flushGpuAndSync(); s = nullptr; params.cleanUpBackEnd(context, backend); } // Then, alter each parameter in turn and check that the DDL & surface are incompatible for (int i = 0; i < SurfaceParameters::kNumParams; ++i) { SurfaceParameters params(context); params.modify(i); if (SurfaceParameters::kProtectedCount == i) { if (context->backend() != GrBackendApi::kVulkan) { // Only the Vulkan backend respects the protected parameter continue; } #ifdef SK_VULKAN const GrVkCaps* vkCaps = (const GrVkCaps*) context->priv().caps(); // And, even then, only when it is a protected context if (!vkCaps->supportsProtectedMemory()) { continue; } #endif } GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { continue; } if (SurfaceParameters::kSampleCount == i) { int supportedSampleCount = caps->getRenderTargetSampleCount( params.sampleCount(), backend.getBackendFormat()); if (1 == supportedSampleCount) { // If changing the sample count won't result in a different // surface characterization, skip this step s = nullptr; params.cleanUpBackEnd(context, backend); continue; } } if (SurfaceParameters::kMipMipCount == i && !caps->mipMapSupport()) { // If changing the mipmap setting won't result in a different surface characterization, // skip this step s = nullptr; params.cleanUpBackEnd(context, backend); continue; } if (SurfaceParameters::kFBO0Count == i && context->backend() != GrBackendApi::kOpenGL) { // FBO0 only affects the surface characterization when using OpenGL s = nullptr; params.cleanUpBackEnd(context, backend); continue; } REPORTER_ASSERT(reporter, !s->draw(ddl.get()), "DDLSurfaceCharacterizationTest failed on parameter: %d\n", i); context->flush(); gpu->testingOnly_flushGpuAndSync(); s = nullptr; params.cleanUpBackEnd(context, backend); } // Next test the compatibility of resource cache parameters { const SurfaceParameters params(context); GrBackendTexture backend; sk_sp s = params.make(context, &backend); size_t maxResourceBytes = context->getResourceCacheLimit(); context->setResourceCacheLimit(maxResourceBytes/2); REPORTER_ASSERT(reporter, !s->draw(ddl.get())); // DDL TODO: once proxies/ops can be de-instantiated we can re-enable these tests. // For now, DDLs are drawn once. #if 0 // resource limits >= those at characterization time are accepted context->setResourceCacheLimits(2*maxResourceCount, maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl.get())); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->setResourceCacheLimits(maxResourceCount, 2*maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl.get())); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->setResourceCacheLimits(maxResourceCount, maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl.get())); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); #endif context->flush(); gpu->testingOnly_flushGpuAndSync(); s = nullptr; params.cleanUpBackEnd(context, backend); } // Test that the textureability of the DDL characterization can block a DDL draw { GrBackendTexture backend; SurfaceParameters params(context); params.setShouldCreateMipMaps(false); params.setTextureable(false); sk_sp s = params.make(context, &backend); if (s) { REPORTER_ASSERT(reporter, !s->draw(ddl.get())); // bc the DDL was made w/ textureability context->flush(); gpu->testingOnly_flushGpuAndSync(); s = nullptr; params.cleanUpBackEnd(context, backend); } } // Make sure non-GPU-backed surfaces fail characterization { SkImageInfo ii = SkImageInfo::MakeN32(64, 64, kOpaque_SkAlphaType); sk_sp rasterSurface = SkSurface::MakeRaster(ii); SkSurfaceCharacterization c; REPORTER_ASSERT(reporter, !rasterSurface->characterize(&c)); } // Exercise the createResized method { SurfaceParameters params(context); GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // Too small SkSurfaceCharacterization char1 = char0.createResized(-1, -1); REPORTER_ASSERT(reporter, !char1.isValid()); // Too large SkSurfaceCharacterization char2 = char0.createResized(1000000, 32); REPORTER_ASSERT(reporter, !char2.isValid()); // Just right SkSurfaceCharacterization char3 = char0.createResized(32, 32); REPORTER_ASSERT(reporter, char3.isValid()); REPORTER_ASSERT(reporter, 32 == char3.width()); REPORTER_ASSERT(reporter, 32 == char3.height()); s = nullptr; params.cleanUpBackEnd(context, backend); } // Exercise the createColorSpace method { SurfaceParameters params(context); GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // The default params create an sRGB color space REPORTER_ASSERT(reporter, char0.colorSpace()->isSRGB()); REPORTER_ASSERT(reporter, !char0.colorSpace()->gammaIsLinear()); { sk_sp newCS = SkColorSpace::MakeSRGBLinear(); SkSurfaceCharacterization char1 = char0.createColorSpace(std::move(newCS)); REPORTER_ASSERT(reporter, char1.isValid()); REPORTER_ASSERT(reporter, !char1.colorSpace()->isSRGB()); REPORTER_ASSERT(reporter, char1.colorSpace()->gammaIsLinear()); } { SkSurfaceCharacterization char2 = char0.createColorSpace(nullptr); REPORTER_ASSERT(reporter, char2.isValid()); REPORTER_ASSERT(reporter, !char2.colorSpace()); } { sk_sp newCS = SkColorSpace::MakeSRGBLinear(); SkSurfaceCharacterization invalid; REPORTER_ASSERT(reporter, !invalid.isValid()); SkSurfaceCharacterization stillInvalid = invalid.createColorSpace(std::move(newCS)); REPORTER_ASSERT(reporter, !stillInvalid.isValid()); } s = nullptr; params.cleanUpBackEnd(context, backend); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSurfaceCharacterizationTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); DDLSurfaceCharacterizationTestImpl(context, reporter); } // Test that a DDL created w/o textureability can be replayed into both a textureable and // non-textureable destination. Note that DDLSurfaceCharacterizationTest tests that a // textureable DDL cannot be played into a non-textureable destination but can be replayed // into a textureable destination. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLNonTextureabilityTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrGpu* gpu = context->priv().getGpu(); // Create a bitmap that we can readback into SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.allocPixels(imageInfo); for (bool textureability : { true, false }) { std::unique_ptr ddl; // First, create a DDL w/o textureability (and thus no mipmaps). TODO: once we have // reusable DDLs, move this outside of the loop. { SurfaceParameters params(context); params.setShouldCreateMipMaps(false); params.setTextureable(false); ddl = params.createDDL(context); SkAssertResult(ddl); } // Then verify it can draw into either flavor of destination SurfaceParameters params(context); params.setShouldCreateMipMaps(textureability); params.setTextureable(textureability); GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { continue; } REPORTER_ASSERT(reporter, s->draw(ddl.get())); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->flush(); gpu->testingOnly_flushGpuAndSync(); s = nullptr; params.cleanUpBackEnd(context, backend); } } static void test_make_render_target(skiatest::Reporter* reporter, GrContext* context, const SurfaceParameters& params) { { const SkSurfaceCharacterization c = params.createCharacterization(context); if (!c.isValid()) { GrBackendTexture backend; sk_sp tmp = params.make(context, &backend); // If we couldn't characterize the surface we shouldn't be able to create it either REPORTER_ASSERT(reporter, !tmp); if (tmp) { tmp = nullptr; params.cleanUpBackEnd(context, backend); } return; } } const SkSurfaceCharacterization c = params.createCharacterization(context); GrBackendTexture backend; { sk_sp s = params.make(context, &backend); REPORTER_ASSERT(reporter, s); if (!s) { REPORTER_ASSERT(reporter, !c.isValid()); params.cleanUpBackEnd(context, backend); return; } REPORTER_ASSERT(reporter, c.isValid()); REPORTER_ASSERT(reporter, c.isCompatible(backend)); REPORTER_ASSERT(reporter, s->isCompatible(c)); // Note that we're leaving 'backend' live here } // Make an SkSurface from scratch { sk_sp s = SkSurface::MakeRenderTarget(context, c, SkBudgeted::kYes); REPORTER_ASSERT(reporter, s); REPORTER_ASSERT(reporter, s->isCompatible(c)); } // Make an SkSurface that wraps the existing backend texture { sk_sp s = SkSurface::MakeFromBackendTexture(context, c, backend); REPORTER_ASSERT(reporter, s); REPORTER_ASSERT(reporter, s->isCompatible(c)); } params.cleanUpBackEnd(context, backend); } //////////////////////////////////////////////////////////////////////////////// // This tests the SkSurface::MakeRenderTarget variants that take an SkSurfaceCharacterization. // In particular, the SkSurface, backendTexture and SkSurfaceCharacterization // should always be compatible. void DDLMakeRenderTargetTestImpl(GrContext* context, skiatest::Reporter* reporter) { for (int i = 0; i < SurfaceParameters::kNumParams; ++i) { if (SurfaceParameters::kFBO0Count == i) { // MakeRenderTarget doesn't support FBO0 continue; } if (SurfaceParameters::kProtectedCount == i) { if (context->backend() != GrBackendApi::kVulkan) { // Only the Vulkan backend respects the protected parameter continue; } #ifdef SK_VULKAN const GrVkCaps* vkCaps = (const GrVkCaps*) context->priv().caps(); // And, even then, only when it is a protected context if (!vkCaps->supportsProtectedMemory()) { continue; } #endif } SurfaceParameters params(context); params.modify(i); if (!context->priv().caps()->mipMapSupport()) { params.setShouldCreateMipMaps(false); } test_make_render_target(reporter, context, params); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMakeRenderTargetTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); DDLMakeRenderTargetTestImpl(context, reporter); } //////////////////////////////////////////////////////////////////////////////// static constexpr int kSize = 8; struct TextureReleaseChecker { TextureReleaseChecker() : fReleaseCount(0) {} int fReleaseCount; static void Release(void* self) { static_cast(self)->fReleaseCount++; } }; enum class DDLStage { kMakeImage, kDrawImage, kDetach, kDrawDDL }; // This tests the ability to create and use wrapped textures in a DDL world DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLWrapBackendTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrBackendTexture backendTex = context->createBackendTexture( kSize, kSize, kRGBA_8888_SkColorType, SkColors::kTransparent, GrMipMapped::kNo, GrRenderable::kNo, GrProtected::kNo); if (!backendTex.isValid()) { return; } SurfaceParameters params(context); GrBackendTexture backend; sk_sp s = params.make(context, &backend); if (!s) { context->deleteBackendTexture(backendTex); return; } SkSurfaceCharacterization c; SkAssertResult(s->characterize(&c)); std::unique_ptr recorder(new SkDeferredDisplayListRecorder(c)); SkCanvas* canvas = recorder->getCanvas(); if (!canvas) { s = nullptr; params.cleanUpBackEnd(context, backend); context->deleteBackendTexture(backendTex); return; } GrContext* deferredContext = canvas->getGrContext(); if (!deferredContext) { s = nullptr; params.cleanUpBackEnd(context, backend); context->deleteBackendTexture(backendTex); return; } // Wrapped Backend Textures are not supported in DDL sk_sp image = SkImage::MakeFromAdoptedTexture(deferredContext, backendTex, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr); REPORTER_ASSERT(reporter, !image); TextureReleaseChecker releaseChecker; image = SkImage::MakeFromTexture(deferredContext, backendTex, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, TextureReleaseChecker::Release, &releaseChecker); REPORTER_ASSERT(reporter, !image); context->deleteBackendTexture(backendTex); s = nullptr; params.cleanUpBackEnd(context, backend); } static sk_sp dummy_fulfill_proc(void*) { SkASSERT(0); return nullptr; } static void dummy_release_proc(void*) { SkASSERT(0); } static void dummy_done_proc(void*) {} //////////////////////////////////////////////////////////////////////////////// // Test out the behavior of an invalid DDLRecorder DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLInvalidRecorder, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); { SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); // never calling getCanvas means the backing surface is never allocated SkDeferredDisplayListRecorder recorder(characterization); } { SkSurfaceCharacterization invalid; SkDeferredDisplayListRecorder recorder(invalid); const SkSurfaceCharacterization c = recorder.characterization(); REPORTER_ASSERT(reporter, !c.isValid()); REPORTER_ASSERT(reporter, !recorder.getCanvas()); REPORTER_ASSERT(reporter, !recorder.detach()); GrBackendFormat format = context->defaultBackendFormat(kRGBA_8888_SkColorType, GrRenderable::kNo); SkASSERT(format.isValid()); sk_sp image = recorder.makePromiseTexture( format, 32, 32, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, dummy_fulfill_proc, dummy_release_proc, dummy_done_proc, nullptr, SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew); REPORTER_ASSERT(reporter, !image); } } //////////////////////////////////////////////////////////////////////////////// // Ensure that flushing while DDL recording doesn't cause a crash DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLFlushWhileRecording, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); SkDeferredDisplayListRecorder recorder(characterization); SkCanvas* canvas = recorder.getCanvas(); canvas->getGrContext()->flush(); } //////////////////////////////////////////////////////////////////////////////// // Test that flushing a DDL via SkSurface::flush works struct FulfillInfo { sk_sp fTex; bool fFulfilled = false; bool fReleased = false; bool fDone = false; }; static sk_sp tracking_fulfill_proc(void* context) { FulfillInfo* info = (FulfillInfo*) context; info->fFulfilled = true; return info->fTex; } static void tracking_release_proc(void* context) { FulfillInfo* info = (FulfillInfo*) context; info->fReleased = true; } static void tracking_done_proc(void* context) { FulfillInfo* info = (FulfillInfo*) context; info->fDone = true; } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSkSurfaceFlush, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); SkImageInfo ii = SkImageInfo::Make(32, 32, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); GrBackendTexture backendTexture; if (!CreateBackendTexture(context, &backendTexture, ii, SkColors::kCyan, GrMipMapped::kNo, GrRenderable::kNo)) { REPORTER_ASSERT(reporter, false); return; } FulfillInfo fulfillInfo; fulfillInfo.fTex = SkPromiseImageTexture::Make(backendTexture); std::unique_ptr ddl; { SkDeferredDisplayListRecorder recorder(characterization); GrBackendFormat format = context->defaultBackendFormat(kRGBA_8888_SkColorType, GrRenderable::kNo); SkASSERT(format.isValid()); sk_sp promiseImage = recorder.makePromiseTexture( format, 32, 32, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, tracking_fulfill_proc, tracking_release_proc, tracking_done_proc, &fulfillInfo, SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew); SkCanvas* canvas = recorder.getCanvas(); canvas->clear(SK_ColorRED); canvas->drawImage(promiseImage, 0, 0); ddl = recorder.detach(); } context->flush(); s->draw(ddl.get()); GrFlushInfo flushInfo; s->flush(SkSurface::BackendSurfaceAccess::kPresent, flushInfo); REPORTER_ASSERT(reporter, fulfillInfo.fFulfilled); REPORTER_ASSERT(reporter, fulfillInfo.fReleased); if (GrBackendApi::kVulkan == context->backend() || GrBackendApi::kMetal == context->backend()) { // In order to receive the done callback with Vulkan we need to perform the equivalent // of a glFinish GrFlushInfo flushInfoSyncCpu; flushInfoSyncCpu.fFlags = kSyncCpu_GrFlushFlag; s->flush(SkSurface::BackendSurfaceAccess::kPresent, flushInfoSyncCpu); } REPORTER_ASSERT(reporter, fulfillInfo.fDone); REPORTER_ASSERT(reporter, fulfillInfo.fTex->unique()); fulfillInfo.fTex.reset(); DeleteBackendTexture(context, backendTexture); } //////////////////////////////////////////////////////////////////////////////// // Ensure that reusing a single DDLRecorder to create multiple DDLs works cleanly DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMultipleDDLs, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkBitmap bitmap; bitmap.allocPixels(ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); SkDeferredDisplayListRecorder recorder(characterization); SkCanvas* canvas1 = recorder.getCanvas(); canvas1->clear(SK_ColorRED); canvas1->save(); canvas1->clipRect(SkRect::MakeXYWH(8, 8, 16, 16)); std::unique_ptr ddl1 = recorder.detach(); SkCanvas* canvas2 = recorder.getCanvas(); SkPaint p; p.setColor(SK_ColorGREEN); canvas2->drawRect(SkRect::MakeWH(32, 32), p); std::unique_ptr ddl2 = recorder.detach(); REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData()); REPORTER_ASSERT(reporter, ddl2->priv().lazyProxyData()); // The lazy proxy data being different ensures that the SkSurface, SkCanvas and backing- // lazy proxy are all different between the two DDLs REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData() != ddl2->priv().lazyProxyData()); s->draw(ddl1.get()); s->draw(ddl2.get()); // Make sure the clipRect from DDL1 didn't percolate into DDL2 s->readPixels(ii, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); for (int y = 0; y < 32; ++y) { for (int x = 0; x < 32; ++x) { REPORTER_ASSERT(reporter, bitmap.getColor(x, y) == SK_ColorGREEN); if (bitmap.getColor(x, y) != SK_ColorGREEN) { return; // we only really need to report the error once } } } } #ifdef SK_GL //////////////////////////////////////////////////////////////////////////////// // Check that the texture-specific flags (i.e., for external & rectangle textures) work // for promise images. As such, this is a GL-only test. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLTextureFlagsTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); SkDeferredDisplayListRecorder recorder(characterization); for (GrGLenum target : { GR_GL_TEXTURE_EXTERNAL, GR_GL_TEXTURE_RECTANGLE, GR_GL_TEXTURE_2D } ) { for (auto mipMapped : { GrMipMapped::kNo, GrMipMapped::kYes }) { GrBackendFormat format = GrBackendFormat::MakeGL(GR_GL_RGBA8, target); sk_sp image = recorder.makePromiseTexture( format, 32, 32, mipMapped, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, dummy_fulfill_proc, dummy_release_proc, dummy_done_proc, nullptr, SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew); if (GR_GL_TEXTURE_2D != target && mipMapped == GrMipMapped::kYes) { REPORTER_ASSERT(reporter, !image); continue; } REPORTER_ASSERT(reporter, image); GrTextureProxy* backingProxy = ((SkImage_GpuBase*) image.get())->peekProxy(); REPORTER_ASSERT(reporter, backingProxy->mipMapped() == mipMapped); if (GR_GL_TEXTURE_2D == target) { REPORTER_ASSERT(reporter, !backingProxy->hasRestrictedSampling()); } else { REPORTER_ASSERT(reporter, backingProxy->hasRestrictedSampling()); } } } } #endif // SK_GL //////////////////////////////////////////////////////////////////////////////// // Test colorType and pixelConfig compatibility. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLCompatibilityTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); for (int ct = 0; ct <= kLastEnum_SkColorType; ++ct) { SkColorType colorType = static_cast(ct); SurfaceParameters params(context); params.setColorType(colorType); params.setColorSpace(nullptr); if (!context->priv().caps()->mipMapSupport()) { params.setShouldCreateMipMaps(false); } test_make_render_target(reporter, context, params); } }