/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/pathops/SkIntersections.h" #include "src/pathops/SkPathOpsLine.h" #include "src/pathops/SkPathOpsQuad.h" #include "src/pathops/SkReduceOrder.h" #include "tests/PathOpsExtendedTest.h" #include "tests/PathOpsTestCommon.h" #include "tests/Test.h" #include static struct lineQuad { QuadPts quad; SkDLine line; int result; SkDPoint expected[2]; } lineQuadTests[] = { // quad line results {{{{1, 1}, {2, 1}, {0, 2}}}, {{{0, 0}, {1, 1}}}, 1, {{1, 1}, {0, 0}} }, {{{{0, 0}, {1, 1}, {3, 1}}}, {{{0, 0}, {3, 1}}}, 2, {{0, 0}, {3, 1}} }, {{{{2, 0}, {1, 1}, {2, 2}}}, {{{0, 0}, {0, 2}}}, 0, {{0, 0}, {0, 0}} }, {{{{4, 0}, {0, 1}, {4, 2}}}, {{{3, 1}, {4, 1}}}, 0, {{0, 0}, {0, 0}} }, {{{{0, 0}, {0, 1}, {1, 1}}}, {{{0, 1}, {1, 0}}}, 1, {{.25, .75}, {0, 0}} }, }; static size_t lineQuadTests_count = SK_ARRAY_COUNT(lineQuadTests); static int doIntersect(SkIntersections& intersections, const SkDQuad& quad, const SkDLine& line, bool& flipped) { int result; flipped = false; if (line[0].fX == line[1].fX) { double top = line[0].fY; double bottom = line[1].fY; flipped = top > bottom; if (flipped) { using std::swap; swap(top, bottom); } result = intersections.vertical(quad, top, bottom, line[0].fX, flipped); } else if (line[0].fY == line[1].fY) { double left = line[0].fX; double right = line[1].fX; flipped = left > right; if (flipped) { using std::swap; swap(left, right); } result = intersections.horizontal(quad, left, right, line[0].fY, flipped); } else { intersections.intersect(quad, line); result = intersections.used(); } return result; } static struct oneLineQuad { QuadPts quad; SkDLine line; } oneOffs[] = { {{{{97.9337616,100}, {88,112.94265}, {88,130}}}, {{{88.919838,120}, {107.058823,120}}}}, {{{{447.96701049804687, 894.4381103515625}, {448.007080078125, 894.4239501953125}, {448.0140380859375, 894.4215087890625}}}, {{{490.43548583984375, 879.40740966796875}, {405.59262084960937, 909.435546875}}}}, {{{{142.589081, 102.283646}, {149.821579, 100}, {158, 100}}}, {{{90, 230}, {160, 60}}}}, {{{{1101, 10}, {1101, 8.3431453704833984}, {1099.828857421875, 7.1711997985839844}}}, {{{1099.828857421875,7.1711711883544922}, {1099.121337890625,7.8786783218383789}}}}, {{{{973, 507}, {973, 508.24264526367187}, {972.12158203125, 509.12161254882812}}}, {{{930, 467}, {973, 510}}}}, {{{{369.848602, 145.680267}, {382.360413, 121.298294}, {406.207703, 121.298294}}}, {{{406.207703, 121.298294}, {348.781738, 123.864815}}}}, }; static size_t oneOffs_count = SK_ARRAY_COUNT(oneOffs); static void testOneOffs(skiatest::Reporter* reporter) { bool flipped = false; for (size_t index = 0; index < oneOffs_count; ++index) { const QuadPts& q = oneOffs[index].quad; SkDQuad quad; quad.debugSet(q.fPts); SkASSERT(ValidQuad(quad)); const SkDLine& line = oneOffs[index].line; SkASSERT(ValidLine(line)); SkIntersections intersections; int result = doIntersect(intersections, quad, line, flipped); for (int inner = 0; inner < result; ++inner) { double quadT = intersections[0][inner]; SkDPoint quadXY = quad.ptAtT(quadT); double lineT = intersections[1][inner]; SkDPoint lineXY = line.ptAtT(lineT); if (!quadXY.approximatelyEqual(lineXY)) { quadXY.approximatelyEqual(lineXY); } REPORTER_ASSERT(reporter, quadXY.approximatelyEqual(lineXY)); } } } DEF_TEST(PathOpsQuadLineIntersectionOneOff, reporter) { testOneOffs(reporter); } DEF_TEST(PathOpsQuadLineIntersection, reporter) { for (size_t index = 0; index < lineQuadTests_count; ++index) { int iIndex = static_cast(index); const QuadPts& q = lineQuadTests[index].quad; SkDQuad quad; quad.debugSet(q.fPts); SkASSERT(ValidQuad(quad)); const SkDLine& line = lineQuadTests[index].line; SkASSERT(ValidLine(line)); SkReduceOrder reducer1, reducer2; int order1 = reducer1.reduce(quad); int order2 = reducer2.reduce(line); if (order1 < 3) { SkDebugf("%s [%d] quad order=%d\n", __FUNCTION__, iIndex, order1); REPORTER_ASSERT(reporter, 0); } if (order2 < 2) { SkDebugf("%s [%d] line order=%d\n", __FUNCTION__, iIndex, order2); REPORTER_ASSERT(reporter, 0); } SkIntersections intersections; bool flipped = false; int result = doIntersect(intersections, quad, line, flipped); REPORTER_ASSERT(reporter, result == lineQuadTests[index].result); if (intersections.used() <= 0) { continue; } for (int pt = 0; pt < result; ++pt) { double tt1 = intersections[0][pt]; REPORTER_ASSERT(reporter, tt1 >= 0 && tt1 <= 1); SkDPoint t1 = quad.ptAtT(tt1); double tt2 = intersections[1][pt]; REPORTER_ASSERT(reporter, tt2 >= 0 && tt2 <= 1); SkDPoint t2 = line.ptAtT(tt2); if (!t1.approximatelyEqual(t2)) { SkDebugf("%s [%d,%d] x!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, iIndex, pt, tt1, t1.fX, t1.fY, tt2, t2.fX, t2.fY); REPORTER_ASSERT(reporter, 0); } if (!t1.approximatelyEqual(lineQuadTests[index].expected[0]) && (lineQuadTests[index].result == 1 || !t1.approximatelyEqual(lineQuadTests[index].expected[1]))) { SkDebugf("%s t1=(%1.9g,%1.9g)\n", __FUNCTION__, t1.fX, t1.fY); REPORTER_ASSERT(reporter, 0); } } } }