/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PictureRenderer.h" #include "picture_utils.h" #include "SamplePipeControllers.h" #include "SkBitmapHasher.h" #include "SkCanvas.h" #include "SkData.h" #include "SkDevice.h" #include "SkDiscardableMemoryPool.h" #include "SkGPipe.h" #if SK_SUPPORT_GPU #include "gl/GrGLDefines.h" #include "SkGpuDevice.h" #endif #include "SkGraphics.h" #include "SkImageEncoder.h" #include "SkMaskFilter.h" #include "SkMatrix.h" #include "SkMultiPictureDraw.h" #include "SkOSFile.h" #include "SkPaintFilterCanvas.h" #include "SkPicture.h" #include "SkPictureRecorder.h" #include "SkPictureUtils.h" #include "SkPixelRef.h" #include "SkPixelSerializer.h" #include "SkScalar.h" #include "SkStream.h" #include "SkString.h" #include "SkSurface.h" #include "SkTemplates.h" #include "SkTDArray.h" #include "SkThreadUtils.h" #include "SkTypes.h" #include "sk_tool_utils.h" static inline SkScalar scalar_log2(SkScalar x) { static const SkScalar log2_conversion_factor = SkScalarInvert(SkScalarLog(2)); return SkScalarLog(x) * log2_conversion_factor; } namespace sk_tools { enum { kDefaultTileWidth = 256, kDefaultTileHeight = 256 }; void PictureRenderer::init(const SkPicture* pict, const SkString* writePath, const SkString* mismatchPath, const SkString* inputFilename, bool useChecksumBasedFilenames, bool useMultiPictureDraw) { this->CopyString(&fWritePath, writePath); this->CopyString(&fMismatchPath, mismatchPath); this->CopyString(&fInputFilename, inputFilename); fUseChecksumBasedFilenames = useChecksumBasedFilenames; fUseMultiPictureDraw = useMultiPictureDraw; SkASSERT(nullptr == fPicture); SkASSERT(nullptr == fCanvas.get()); if (fPicture || fCanvas.get()) { return; } SkASSERT(pict != nullptr); if (nullptr == pict) { return; } fPicture.reset(SkRef(pict)); fCanvas.reset(this->setupCanvas()); } void PictureRenderer::CopyString(SkString* dest, const SkString* src) { if (src) { dest->set(*src); } else { dest->reset(); } } class FlagsFilterCanvas : public SkPaintFilterCanvas { public: FlagsFilterCanvas(SkCanvas* canvas, PictureRenderer::DrawFilterFlags* flags) : INHERITED(canvas->imageInfo().width(), canvas->imageInfo().height()) , fFlags(flags) { this->addCanvas(canvas); } protected: void onFilterPaint(SkPaint* paint, Type t) const override { paint->setFlags(paint->getFlags() & ~fFlags[t] & SkPaint::kAllFlags); if (PictureRenderer::kMaskFilter_DrawFilterFlag & fFlags[t]) { SkMaskFilter* maskFilter = paint->getMaskFilter(); if (maskFilter) { paint->setMaskFilter(nullptr); } } if (PictureRenderer::kHinting_DrawFilterFlag & fFlags[t]) { paint->setHinting(SkPaint::kNo_Hinting); } else if (PictureRenderer::kSlightHinting_DrawFilterFlag & fFlags[t]) { paint->setHinting(SkPaint::kSlight_Hinting); } } private: const PictureRenderer::DrawFilterFlags* fFlags; typedef SkPaintFilterCanvas INHERITED; }; SkCanvas* PictureRenderer::setupCanvas() { const int width = this->getViewWidth(); const int height = this->getViewHeight(); return this->setupCanvas(width, height); } SkCanvas* PictureRenderer::setupCanvas(int width, int height) { SkAutoTUnref canvas; switch(fDeviceType) { case kBitmap_DeviceType: { SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, width, height); canvas.reset(new SkCanvas(bitmap)); } break; #if SK_SUPPORT_GPU #if SK_ANGLE case kAngle_DeviceType: // fall through #endif #if SK_COMMAND_BUFFER case kCommandBuffer_DeviceType: // fall through #endif #if SK_MESA case kMesa_DeviceType: // fall through #endif case kGPU_DeviceType: case kNVPR_DeviceType: { SkAutoTUnref target; if (fGrContext) { // create a render target to back the device GrSurfaceDesc desc; desc.fConfig = kSkia8888_GrPixelConfig; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = width; desc.fHeight = height; desc.fSampleCnt = fSampleCount; target.reset(fGrContext->textureProvider()->createTexture(desc, false, nullptr, 0)); } uint32_t flags = fUseDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0; SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device( SkGpuDevice::Create(target->asRenderTarget(), &props, SkGpuDevice::kUninit_InitContents)); if (!device) { return nullptr; } canvas.reset(new SkCanvas(device)); break; } #endif default: SkASSERT(0); return nullptr; } if (fHasDrawFilters) { if (fDrawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) { canvas->setAllowSoftClip(false); } canvas.reset(new FlagsFilterCanvas(canvas.get(), fDrawFilters)); } this->scaleToScaleFactor(canvas); // Pictures often lie about their extent (i.e., claim to be 100x100 but // only ever draw to 90x100). Clear here so the undrawn portion will have // a consistent color canvas->clear(SK_ColorTRANSPARENT); return canvas.detach(); } void PictureRenderer::scaleToScaleFactor(SkCanvas* canvas) { SkASSERT(canvas != nullptr); if (fScaleFactor != SK_Scalar1) { canvas->scale(fScaleFactor, fScaleFactor); } } void PictureRenderer::end() { this->resetState(true); fPicture.reset(nullptr); fCanvas.reset(nullptr); } int PictureRenderer::getViewWidth() { SkASSERT(fPicture != nullptr); int width = SkScalarCeilToInt(fPicture->cullRect().width() * fScaleFactor); if (fViewport.width() > 0) { width = SkMin32(width, fViewport.width()); } return width; } int PictureRenderer::getViewHeight() { SkASSERT(fPicture != nullptr); int height = SkScalarCeilToInt(fPicture->cullRect().height() * fScaleFactor); if (fViewport.height() > 0) { height = SkMin32(height, fViewport.height()); } return height; } /** Converts fPicture to a picture that uses a BBoxHierarchy. * PictureRenderer subclasses that are used to test picture playback * should call this method during init. */ void PictureRenderer::buildBBoxHierarchy() { SkASSERT(fPicture); if (kNone_BBoxHierarchyType != fBBoxHierarchyType && fPicture) { SkAutoTDelete factory(this->getFactory()); SkPictureRecorder recorder; uint32_t flags = this->recordFlags(); if (fUseMultiPictureDraw) { flags |= SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag; } SkCanvas* canvas = recorder.beginRecording(fPicture->cullRect().width(), fPicture->cullRect().height(), factory.get(), flags); fPicture->playback(canvas); fPicture.reset(recorder.endRecording()); } } void PictureRenderer::resetState(bool callFinish) { #if SK_SUPPORT_GPU SkGLContext* glContext = this->getGLContext(); if (nullptr == glContext) { SkASSERT(kBitmap_DeviceType == fDeviceType); return; } fGrContext->flush(); glContext->swapBuffers(); if (callFinish) { SK_GL(*glContext, Finish()); } #endif } void PictureRenderer::purgeTextures() { SkDiscardableMemoryPool* pool = SkGetGlobalDiscardableMemoryPool(); pool->dumpPool(); #if SK_SUPPORT_GPU SkGLContext* glContext = this->getGLContext(); if (nullptr == glContext) { SkASSERT(kBitmap_DeviceType == fDeviceType); return; } // resetState should've already done this fGrContext->flush(); fGrContext->purgeAllUnlockedResources(); #endif } /////////////////////////////////////////////////////////////////////////////////////////////// SkCanvas* RecordPictureRenderer::setupCanvas(int width, int height) { // defer the canvas setup until the render step return nullptr; } bool RecordPictureRenderer::render(SkBitmap** out) { SkAutoTDelete factory(this->getFactory()); SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(this->getViewWidth()), SkIntToScalar(this->getViewHeight()), factory.get(), this->recordFlags()); this->scaleToScaleFactor(canvas); fPicture->playback(canvas); SkAutoTUnref picture(recorder.endRecording()); if (!fWritePath.isEmpty()) { // Record the new picture as a new SKP with PNG encoded bitmaps. SkString skpPath = SkOSPath::Join(fWritePath.c_str(), fInputFilename.c_str()); SkFILEWStream stream(skpPath.c_str()); sk_tool_utils::PngPixelSerializer serializer; picture->serialize(&stream, &serializer); return true; } return false; } SkString RecordPictureRenderer::getConfigNameInternal() { return SkString("record"); } /////////////////////////////////////////////////////////////////////////////////////////////// bool PipePictureRenderer::render(SkBitmap** out) { SkASSERT(fCanvas.get() != nullptr); SkASSERT(fPicture != nullptr); if (nullptr == fCanvas.get() || nullptr == fPicture) { return false; } PipeController pipeController(fCanvas.get()); SkGPipeWriter writer; SkCanvas* pipeCanvas = writer.startRecording(&pipeController); pipeCanvas->drawPicture(fPicture); writer.endRecording(); fCanvas->flush(); if (out) { *out = new SkBitmap; setup_bitmap(*out, SkScalarCeilToInt(fPicture->cullRect().width()), SkScalarCeilToInt(fPicture->cullRect().height())); fCanvas->readPixels(*out, 0, 0); } return true; } SkString PipePictureRenderer::getConfigNameInternal() { return SkString("pipe"); } /////////////////////////////////////////////////////////////////////////////////////////////// void SimplePictureRenderer::init(const SkPicture* picture, const SkString* writePath, const SkString* mismatchPath, const SkString* inputFilename, bool useChecksumBasedFilenames, bool useMultiPictureDraw) { INHERITED::init(picture, writePath, mismatchPath, inputFilename, useChecksumBasedFilenames, useMultiPictureDraw); this->buildBBoxHierarchy(); } bool SimplePictureRenderer::render(SkBitmap** out) { SkASSERT(fCanvas.get() != nullptr); SkASSERT(fPicture); if (nullptr == fCanvas.get() || nullptr == fPicture) { return false; } if (fUseMultiPictureDraw) { SkMultiPictureDraw mpd; mpd.add(fCanvas, fPicture); mpd.draw(); } else { fCanvas->drawPicture(fPicture); } fCanvas->flush(); if (out) { *out = new SkBitmap; setup_bitmap(*out, SkScalarCeilToInt(fPicture->cullRect().width()), SkScalarCeilToInt(fPicture->cullRect().height())); fCanvas->readPixels(*out, 0, 0); } return true; } SkString SimplePictureRenderer::getConfigNameInternal() { return SkString("simple"); } /////////////////////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU TiledPictureRenderer::TiledPictureRenderer(const GrContextOptions& opts) : INHERITED(opts) , fTileWidth(kDefaultTileWidth) #else TiledPictureRenderer::TiledPictureRenderer() : fTileWidth(kDefaultTileWidth) #endif , fTileHeight(kDefaultTileHeight) , fTileWidthPercentage(0.0) , fTileHeightPercentage(0.0) , fTileMinPowerOf2Width(0) , fCurrentTileOffset(-1) , fTilesX(0) , fTilesY(0) { } void TiledPictureRenderer::init(const SkPicture* pict, const SkString* writePath, const SkString* mismatchPath, const SkString* inputFilename, bool useChecksumBasedFilenames, bool useMultiPictureDraw) { SkASSERT(pict); SkASSERT(0 == fTileRects.count()); if (nullptr == pict || fTileRects.count() != 0) { return; } // Do not call INHERITED::init(), which would create a (potentially large) canvas which is not // used by bench_pictures. fPicture.reset(SkRef(pict)); this->CopyString(&fWritePath, writePath); this->CopyString(&fMismatchPath, mismatchPath); this->CopyString(&fInputFilename, inputFilename); fUseChecksumBasedFilenames = useChecksumBasedFilenames; fUseMultiPictureDraw = useMultiPictureDraw; this->buildBBoxHierarchy(); if (fTileWidthPercentage > 0) { fTileWidth = SkScalarCeilToInt(float(fTileWidthPercentage * fPicture->cullRect().width() / 100)); } if (fTileHeightPercentage > 0) { fTileHeight = SkScalarCeilToInt(float(fTileHeightPercentage * fPicture->cullRect().height() / 100)); } if (fTileMinPowerOf2Width > 0) { this->setupPowerOf2Tiles(); } else { this->setupTiles(); } fCanvas.reset(this->setupCanvas(fTileWidth, fTileHeight)); // Initialize to -1 so that the first call to nextTile will set this up to draw tile 0 on the // first call to drawCurrentTile. fCurrentTileOffset = -1; } void TiledPictureRenderer::end() { fTileRects.reset(); this->INHERITED::end(); } void TiledPictureRenderer::setupTiles() { // Only use enough tiles to cover the viewport const int width = this->getViewWidth(); const int height = this->getViewHeight(); fTilesX = fTilesY = 0; for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { fTilesY++; for (int tile_x_start = 0; tile_x_start < width; tile_x_start += fTileWidth) { if (0 == tile_y_start) { // Only count tiles in the X direction on the first pass. fTilesX++; } *fTileRects.append() = SkIRect::MakeXYWH(tile_x_start, tile_y_start, fTileWidth, fTileHeight); } } } bool TiledPictureRenderer::tileDimensions(int &x, int &y) { if (fTileRects.count() == 0 || nullptr == fPicture) { return false; } x = fTilesX; y = fTilesY; return true; } // The goal of the powers of two tiles is to minimize the amount of wasted tile // space in the width-wise direction and then minimize the number of tiles. The // constraints are that every tile must have a pixel width that is a power of // two and also be of some minimal width (that is also a power of two). // // This is solved by first taking our picture size and rounding it up to the // multiple of the minimal width. The binary representation of this rounded // value gives us the tiles we need: a bit of value one means we need a tile of // that size. void TiledPictureRenderer::setupPowerOf2Tiles() { // Only use enough tiles to cover the viewport const int width = this->getViewWidth(); const int height = this->getViewHeight(); int rounded_value = width; if (width % fTileMinPowerOf2Width != 0) { rounded_value = width - (width % fTileMinPowerOf2Width) + fTileMinPowerOf2Width; } int num_bits = SkScalarCeilToInt(scalar_log2(SkIntToScalar(width))); int largest_possible_tile_size = 1 << num_bits; fTilesX = fTilesY = 0; // The tile height is constant for a particular picture. for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { fTilesY++; int tile_x_start = 0; int current_width = largest_possible_tile_size; // Set fTileWidth to be the width of the widest tile, so that each canvas is large enough // to draw each tile. fTileWidth = current_width; while (current_width >= fTileMinPowerOf2Width) { // It is very important this is a bitwise AND. if (current_width & rounded_value) { if (0 == tile_y_start) { // Only count tiles in the X direction on the first pass. fTilesX++; } *fTileRects.append() = SkIRect::MakeXYWH(tile_x_start, tile_y_start, current_width, fTileHeight); tile_x_start += current_width; } current_width >>= 1; } } } /** * Draw the specified picture to the canvas translated to rectangle provided, so that this mini * canvas represents the rectangle's portion of the overall picture. * Saves and restores so that the initial clip and matrix return to their state before this function * is called. */ static void draw_tile_to_canvas(SkCanvas* canvas, const SkIRect& tileRect, const SkPicture* picture) { int saveCount = canvas->save(); // Translate so that we draw the correct portion of the picture. // Perform a postTranslate so that the scaleFactor does not interfere with the positioning. SkMatrix mat(canvas->getTotalMatrix()); mat.postTranslate(-SkIntToScalar(tileRect.fLeft), -SkIntToScalar(tileRect.fTop)); canvas->setMatrix(mat); canvas->clipRect(SkRect::Make(tileRect)); canvas->clear(SK_ColorTRANSPARENT); // Not every picture covers the entirety of every tile canvas->drawPicture(picture); canvas->restoreToCount(saveCount); canvas->flush(); } /////////////////////////////////////////////////////////////////////////////////////////////// /** * Copies the entirety of the src bitmap (typically a tile) into a portion of the dst bitmap. * If the src bitmap is too large to fit within the dst bitmap after the x and y * offsets have been applied, any excess will be ignored (so only the top-left portion of the * src bitmap will be copied). * * @param src source bitmap * @param dst destination bitmap * @param xOffset x-offset within destination bitmap * @param yOffset y-offset within destination bitmap */ static void bitmapCopyAtOffset(const SkBitmap& src, SkBitmap* dst, int xOffset, int yOffset) { for (int y = 0; y height() ; y++) { for (int x = 0; x < src.width() && x + xOffset < dst->width() ; x++) { *dst->getAddr32(xOffset + x, yOffset + y) = *src.getAddr32(x, y); } } } bool TiledPictureRenderer::nextTile(int &i, int &j) { if (++fCurrentTileOffset < fTileRects.count()) { i = fCurrentTileOffset % fTilesX; j = fCurrentTileOffset / fTilesX; return true; } return false; } void TiledPictureRenderer::drawCurrentTile() { SkASSERT(fCurrentTileOffset >= 0 && fCurrentTileOffset < fTileRects.count()); draw_tile_to_canvas(fCanvas, fTileRects[fCurrentTileOffset], fPicture); } bool TiledPictureRenderer::postRender(SkCanvas* canvas, const SkIRect& tileRect, SkBitmap* tempBM, SkBitmap** out, int tileNumber) { bool success = true; if (out) { if (canvas->readPixels(tempBM, 0, 0)) { // Add this tile to the entire bitmap. bitmapCopyAtOffset(*tempBM, *out, tileRect.left(), tileRect.top()); } else { success = false; } } return success; } bool TiledPictureRenderer::render(SkBitmap** out) { SkASSERT(fPicture != nullptr); if (nullptr == fPicture) { return false; } SkBitmap bitmap; if (out) { *out = new SkBitmap; setup_bitmap(*out, SkScalarCeilToInt(fPicture->cullRect().width()), SkScalarCeilToInt(fPicture->cullRect().height())); setup_bitmap(&bitmap, fTileWidth, fTileHeight); } bool success = true; if (fUseMultiPictureDraw) { SkMultiPictureDraw mpd; SkTDArray surfaces; surfaces.setReserve(fTileRects.count()); // Create a separate SkSurface/SkCanvas for each tile along with a // translated version of the skp (to mimic Chrome's behavior) and // feed all such pairs to the MultiPictureDraw. for (int i = 0; i < fTileRects.count(); ++i) { SkImageInfo ii = fCanvas->imageInfo().makeWH(fTileRects[i].width(), fTileRects[i].height()); *surfaces.append() = fCanvas->newSurface(ii); surfaces[i]->getCanvas()->setMatrix(fCanvas->getTotalMatrix()); SkPictureRecorder recorder; SkRTreeFactory bbhFactory; SkCanvas* c = recorder.beginRecording(SkIntToScalar(fTileRects[i].width()), SkIntToScalar(fTileRects[i].height()), &bbhFactory, SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag); c->save(); SkMatrix mat; mat.setTranslate(-SkIntToScalar(fTileRects[i].fLeft), -SkIntToScalar(fTileRects[i].fTop)); c->setMatrix(mat); c->drawPicture(fPicture); c->restore(); SkAutoTUnref xlatedPicture(recorder.endRecording()); mpd.add(surfaces[i]->getCanvas(), xlatedPicture); } // Render all the buffered SkCanvases/SkPictures mpd.draw(); // Sort out the results and cleanup the allocated surfaces for (int i = 0; i < fTileRects.count(); ++i) { success &= this->postRender(surfaces[i]->getCanvas(), fTileRects[i], &bitmap, out, i); surfaces[i]->unref(); } } else { for (int i = 0; i < fTileRects.count(); ++i) { draw_tile_to_canvas(fCanvas, fTileRects[i], fPicture); success &= this->postRender(fCanvas, fTileRects[i], &bitmap, out, i); } } return success; } SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) { SkCanvas* canvas = this->INHERITED::setupCanvas(width, height); SkASSERT(fPicture); // Clip the tile to an area that is completely inside both the SkPicture and the viewport. This // is mostly important for tiles on the right and bottom edges as they may go over this area and // the picture may have some commands that draw outside of this area and so should not actually // be written. // Uses a clipRegion so that it will be unaffected by the scale factor, which may have been set // by INHERITED::setupCanvas. SkRegion clipRegion; clipRegion.setRect(0, 0, this->getViewWidth(), this->getViewHeight()); canvas->clipRegion(clipRegion); return canvas; } SkString TiledPictureRenderer::getConfigNameInternal() { SkString name; if (fTileMinPowerOf2Width > 0) { name.append("pow2tile_"); name.appendf("%i", fTileMinPowerOf2Width); } else { name.append("tile_"); if (fTileWidthPercentage > 0) { name.appendf("%.f%%", fTileWidthPercentage); } else { name.appendf("%i", fTileWidth); } } name.append("x"); if (fTileHeightPercentage > 0) { name.appendf("%.f%%", fTileHeightPercentage); } else { name.appendf("%i", fTileHeight); } return name; } /////////////////////////////////////////////////////////////////////////////////////////////// void PlaybackCreationRenderer::setup() { SkAutoTDelete factory(this->getFactory()); fRecorder.reset(new SkPictureRecorder); SkCanvas* canvas = fRecorder->beginRecording(SkIntToScalar(this->getViewWidth()), SkIntToScalar(this->getViewHeight()), factory.get(), this->recordFlags()); this->scaleToScaleFactor(canvas); canvas->drawPicture(fPicture); } bool PlaybackCreationRenderer::render(SkBitmap** out) { fPicture.reset(fRecorder->endRecording()); // Since this class does not actually render, return false. return false; } SkString PlaybackCreationRenderer::getConfigNameInternal() { return SkString("playback_creation"); } /////////////////////////////////////////////////////////////////////////////////////////////// // SkPicture variants for each BBoxHierarchy type SkBBHFactory* PictureRenderer::getFactory() { switch (fBBoxHierarchyType) { case kNone_BBoxHierarchyType: return nullptr; case kRTree_BBoxHierarchyType: return new SkRTreeFactory; } SkASSERT(0); // invalid bbhType return nullptr; } } // namespace sk_tools