/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #include "Test.h" #if SK_SUPPORT_GPU #include #include "GrClip.h" #include "GrContext.h" #include "GrGpuResource.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "ops/GrMeshDrawOp.h" #include "ops/GrRectOpFactory.h" namespace { class TestOp : public GrMeshDrawOp { public: DEFINE_OP_CLASS_ID const char* name() const override { return "TestOp"; } static std::unique_ptr Make(sk_sp fp) { return std::unique_ptr(new TestOp(std::move(fp))); } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override { static constexpr GrProcessorAnalysisColor kUnknownColor; GrColor overrideColor; fProcessors.finalize(kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, false, caps, &overrideColor); return RequiresDstTexture::kNo; } private: TestOp(sk_sp fp) : INHERITED(ClassID()), fProcessors(std::move(fp)) { this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo); } void onPrepareDraws(Target* target) const override { return; } bool onCombineIfPossible(GrOp* op, const GrCaps& caps) override { return false; } GrProcessorSet fProcessors; typedef GrMeshDrawOp INHERITED; }; /** * FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts * of resources owned by child FPs. */ class TestFP : public GrFragmentProcessor { public: struct Image { Image(sk_sp proxy, GrIOType ioType) : fProxy(proxy), fIOType(ioType) {} sk_sp fProxy; GrIOType fIOType; }; static sk_sp Make(sk_sp child) { return sk_sp(new TestFP(std::move(child))); } static sk_sp Make(const SkTArray>& proxies, const SkTArray>& buffers, const SkTArray& images) { return sk_sp(new TestFP(proxies, buffers, images)); } const char* name() const override { return "test"; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { // We don't really care about reusing these. static int32_t gKey = 0; b->add32(sk_atomic_inc(&gKey)); } private: TestFP(const SkTArray>& proxies, const SkTArray>& buffers, const SkTArray& images) : INHERITED(kNone_OptimizationFlags), fSamplers(4), fBuffers(4), fImages(4) { for (const auto& proxy : proxies) { this->addTextureSampler(&fSamplers.emplace_back(proxy)); } for (const auto& buffer : buffers) { this->addBufferAccess(&fBuffers.emplace_back(kRGBA_8888_GrPixelConfig, buffer.get())); } for (const Image& image : images) { fImages.emplace_back(image.fProxy, image.fIOType, GrSLMemoryModel::kNone, GrSLRestrict::kNo); this->addImageStorageAccess(&fImages.back()); } } TestFP(sk_sp child) : INHERITED(kNone_OptimizationFlags), fSamplers(4), fBuffers(4), fImages(4) { this->registerChildProcessor(std::move(child)); } virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { class TestGLSLFP : public GrGLSLFragmentProcessor { public: TestGLSLFP() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); } private: }; return new TestGLSLFP(); } bool onIsEqual(const GrFragmentProcessor&) const override { return false; } GrTAllocator fSamplers; GrTAllocator fBuffers; GrTAllocator fImages; typedef GrFragmentProcessor INHERITED; }; } template inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = resource->fRefCnt; *readCnt = resource->fPendingReads; *writeCnt = resource->fPendingWrites; } void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = proxy->getBackingRefCnt_TestOnly(); *readCnt = proxy->getPendingReadCnt_TestOnly(); *writeCnt = proxy->getPendingWriteCnt_TestOnly(); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrTextureDesc desc; desc.fConfig = kRGBA_8888_GrPixelConfig; desc.fWidth = 10; desc.fHeight = 10; for (int parentCnt = 0; parentCnt < 2; parentCnt++) { sk_sp renderTargetContext(context->makeDeferredRenderTargetContext( SkBackingFit::kApprox, 1, 1, kRGBA_8888_GrPixelConfig, nullptr)); { bool texelBufferSupport = context->caps()->shaderCaps()->texelBufferSupport(); bool imageLoadStoreSupport = context->caps()->shaderCaps()->imageLoadStoreSupport(); sk_sp proxy1(GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBackingFit::kExact, SkBudgeted::kYes)); sk_sp proxy2(GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBackingFit::kExact, SkBudgeted::kYes)); sk_sp proxy3(GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBackingFit::kExact, SkBudgeted::kYes)); sk_sp proxy4(GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBackingFit::kExact, SkBudgeted::kYes)); sk_sp buffer(texelBufferSupport ? context->resourceProvider()->createBuffer( 1024, GrBufferType::kTexel_GrBufferType, GrAccessPattern::kStatic_GrAccessPattern, 0) : nullptr); { SkTArray> proxies; SkTArray> buffers; SkTArray images; proxies.push_back(proxy1); if (texelBufferSupport) { buffers.push_back(buffer); } if (imageLoadStoreSupport) { images.emplace_back(proxy2, GrIOType::kRead_GrIOType); images.emplace_back(proxy3, GrIOType::kWrite_GrIOType); images.emplace_back(proxy4, GrIOType::kRW_GrIOType); } auto fp = TestFP::Make(std::move(proxies), std::move(buffers), std::move(images)); for (int i = 0; i < parentCnt; ++i) { fp = TestFP::Make(std::move(fp)); } std::unique_ptr op(TestOp::Make(std::move(fp))); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); } int refCnt, readCnt, writeCnt; testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 1 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); if (texelBufferSupport) { testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 1 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); } if (imageLoadStoreSupport) { testingOnly_getIORefCnts(proxy2.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 1 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); testingOnly_getIORefCnts(proxy3.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 1 == writeCnt); testingOnly_getIORefCnts(proxy4.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 1 == readCnt); REPORTER_ASSERT(reporter, 1 == writeCnt); } context->flush(); testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); if (texelBufferSupport) { testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); } if (texelBufferSupport) { testingOnly_getIORefCnts(proxy2.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); testingOnly_getIORefCnts(proxy3.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); testingOnly_getIORefCnts(proxy4.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, 0 == readCnt); REPORTER_ASSERT(reporter, 0 == writeCnt); } } } } // This test uses the random GrFragmentProcessor test factory, which relies on static initializers. #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS static GrColor texel_color(int i, int j) { SkASSERT((unsigned)i < 256 && (unsigned)j < 256); GrColor color = GrColorPackRGBA(j, (uint8_t)(i + j), (uint8_t)(2 * j - i), i); return GrPremulColor(color); } static GrColor4f texel_color4f(int i, int j) { return GrColor4f::FromGrColor(texel_color(i, j)); } void test_draw_op(GrRenderTargetContext* rtc, sk_sp fp, sk_sp inputDataProxy) { GrPaint paint; paint.addColorTextureProcessor(std::move(inputDataProxy), nullptr, SkMatrix::I()); paint.addColorFragmentProcessor(std::move(fp)); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); auto op = GrRectOpFactory::MakeNonAAFill(std::move(paint), SkMatrix::I(), SkRect::MakeWH(rtc->width(), rtc->height()), GrAAType::kNone); rtc->addDrawOp(GrNoClip(), std::move(op)); } #include "SkCommandLineFlags.h" DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?"); #if GR_TEST_UTILS DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); using FPFactory = GrProcessorTestFactory; uint32_t seed = 0; if (FLAGS_randomProcessorTest) { std::random_device rd; seed = rd(); } // If a non-deterministic bot fails this test, check the output to see what seed it used, then // hard-code that value here: SkRandom random(seed); sk_sp rtc = context->makeDeferredRenderTargetContext( SkBackingFit::kExact, 256, 256, kRGBA_8888_GrPixelConfig, nullptr); GrSurfaceDesc desc; desc.fWidth = 256; desc.fHeight = 256; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fConfig = kRGBA_8888_GrPixelConfig; sk_sp proxies[2]; // Put premul data into the RGBA texture that the test FPs can optionally use. std::unique_ptr rgbaData(new GrColor[256 * 256]); for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { rgbaData.get()[256 * y + x] = texel_color(random.nextULessThan(256), random.nextULessThan(256)); } } proxies[0] = GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBudgeted::kYes, rgbaData.get(), 256 * sizeof(GrColor)); // Put random values into the alpha texture that the test FPs can optionally use. desc.fConfig = kAlpha_8_GrPixelConfig; std::unique_ptr alphaData(new uint8_t[256 * 256]); for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { alphaData.get()[256 * y + x] = random.nextULessThan(256); } } proxies[1] = GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBudgeted::kYes, alphaData.get(), 256); if (!proxies[0] || !proxies[1]) { return; } GrProcessorTestData testData(&random, context, rtc.get(), proxies); // Use a different array of premul colors for the output of the fragment processor that preceeds // the fragment processor under test. for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { rgbaData.get()[256 * y + x] = texel_color(x, y); } } desc.fConfig = kRGBA_8888_GrPixelConfig; sk_sp dataProxy = GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, SkBudgeted::kYes, rgbaData.get(), 256 * sizeof(GrColor)); // Because processors factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < FPFactory::Count(); ++i) { int timesToInvokeFactory = 5; // Increase the number of attempts if the FP has child FPs since optimizations likely depend // on child optimizations being present. sk_sp fp = FPFactory::MakeIdx(i, &testData); for (int j = 0; j < fp->numChildProcessors(); ++j) { // This value made a reasonable trade off between time and coverage when this test was // written. timesToInvokeFactory *= FPFactory::Count() / 2; } for (int j = 0; j < timesToInvokeFactory; ++j) { fp = FPFactory::MakeIdx(i, &testData); if (!fp->instantiate(context->resourceProvider())) { continue; } if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && !fp->compatibleWithCoverageAsAlpha()) { continue; } test_draw_op(rtc.get(), fp, dataProxy); memset(rgbaData.get(), 0x0, sizeof(GrColor) * 256 * 256); rtc->readPixels( SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kPremul_SkAlphaType), rgbaData.get(), 0, 0, 0); bool passing = true; if (0) { // Useful to see what FPs are being tested. SkString children; for (int c = 0; c < fp->numChildProcessors(); ++c) { if (!c) { children.append("("); } children.append(fp->childProcessor(c).name()); children.append(c == fp->numChildProcessors() - 1 ? ")" : ", "); } SkDebugf("%s %s\n", fp->name(), children.c_str()); } for (int y = 0; y < 256 && passing; ++y) { for (int x = 0; x < 256 && passing; ++x) { GrColor input = texel_color(x, y); GrColor output = rgbaData.get()[y * 256 + x]; if (fp->compatibleWithCoverageAsAlpha()) { // A modulating processor is allowed to modulate either the input color or // just the input alpha. bool legalColorModulation = GrColorUnpackA(output) <= GrColorUnpackA(input) && GrColorUnpackR(output) <= GrColorUnpackR(input) && GrColorUnpackG(output) <= GrColorUnpackG(input) && GrColorUnpackB(output) <= GrColorUnpackB(input); bool legalAlphaModulation = GrColorUnpackA(output) <= GrColorUnpackA(input) && GrColorUnpackR(output) <= GrColorUnpackA(input) && GrColorUnpackG(output) <= GrColorUnpackA(input) && GrColorUnpackB(output) <= GrColorUnpackA(input); if (!legalColorModulation && !legalAlphaModulation) { ERRORF(reporter, "\"Modulating\" processor %s made color/alpha value larger. " "Input: 0x%08x, Output: 0x%08x.", fp->name(), input, output); passing = false; } } GrColor4f input4f = texel_color4f(x, y); GrColor4f output4f = GrColor4f::FromGrColor(output); GrColor4f expected4f; if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { float rDiff = fabsf(output4f.fRGBA[0] - expected4f.fRGBA[0]); float gDiff = fabsf(output4f.fRGBA[1] - expected4f.fRGBA[1]); float bDiff = fabsf(output4f.fRGBA[2] - expected4f.fRGBA[2]); float aDiff = fabsf(output4f.fRGBA[3] - expected4f.fRGBA[3]); static constexpr float kTol = 4 / 255.f; if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { ERRORF(reporter, "Processor %s claimed output for const input doesn't match " "actual output. Error: %f, Tolerance: %f, input: (%f, %f, %f, " "%f), actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f)", fp->name(), SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol, input4f.fRGBA[0], input4f.fRGBA[1], input4f.fRGBA[2], input4f.fRGBA[3], output4f.fRGBA[0], output4f.fRGBA[1], output4f.fRGBA[2], output4f.fRGBA[3], expected4f.fRGBA[0], expected4f.fRGBA[1], expected4f.fRGBA[2], expected4f.fRGBA[3]); passing = false; } } if (GrColorIsOpaque(input) && fp->preservesOpaqueInput() && !GrColorIsOpaque(output)) { ERRORF(reporter, "Processor %s claimed opaqueness is preserved but it is not. Input: " "0x%08x, Output: 0x%08x.", fp->name(), input, output); passing = false; } if (!passing) { ERRORF(reporter, "Seed: 0x%08x, Processor details: %s", seed, fp->dumpInfo().c_str()); } } } } } } #endif // GR_TEST_UTILS #endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #endif // SK_SUPPORT_GPU