/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkClipOp.h" #include "include/core/SkColor.h" #include "include/core/SkDocument.h" #include "include/core/SkFlattenable.h" #include "include/core/SkImageFilter.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkPixmap.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkRegion.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/core/SkTypes.h" #include "include/core/SkVertices.h" #include "include/docs/SkPDFDocument.h" #include "include/effects/SkImageFilters.h" #include "include/private/SkMalloc.h" #include "include/private/SkTemplates.h" #include "include/utils/SkNWayCanvas.h" #include "include/utils/SkPaintFilterCanvas.h" #include "src/core/SkBigPicture.h" #include "src/core/SkImageFilter_Base.h" #include "src/core/SkRecord.h" #include "src/core/SkSpecialImage.h" #include "src/utils/SkCanvasStack.h" #include "tests/Test.h" #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK #include "include/core/SkColorSpace.h" #include "include/private/SkColorData.h" #endif #include #include class SkReadBuffer; struct ClipRectVisitor { skiatest::Reporter* r; template SkRect operator()(const T&) { REPORTER_ASSERT(r, false, "unexpected record"); return {1,1,0,0}; } SkRect operator()(const SkRecords::ClipRect& op) { return op.rect; } }; DEF_TEST(canvas_unsorted_clip, r) { // Test that sorted and unsorted clip rects are forwarded // to picture subclasses and/or devices sorted. // // We can't just test this with an SkCanvas on stack and // SkCanvas::getLocalClipBounds(), as that only tests the raster device, // which sorts these rects itself. for (SkRect clip : {SkRect{0,0,5,5}, SkRect{5,5,0,0}}) { SkPictureRecorder rec; rec.beginRecording({0,0,10,10}) ->clipRect(clip); sk_sp pic = rec.finishRecordingAsPicture(); auto bp = (const SkBigPicture*)pic.get(); const SkRecord* record = bp->record(); REPORTER_ASSERT(r, record->count() == 1); REPORTER_ASSERT(r, record->visit(0, ClipRectVisitor{r}) .isSorted()); } } DEF_TEST(canvas_clipbounds, reporter) { SkCanvas canvas(10, 10); SkIRect irect, irect2; SkRect rect, rect2; irect = canvas.getDeviceClipBounds(); REPORTER_ASSERT(reporter, irect == SkIRect::MakeWH(10, 10)); REPORTER_ASSERT(reporter, canvas.getDeviceClipBounds(&irect2)); REPORTER_ASSERT(reporter, irect == irect2); // local bounds are always too big today -- can we trim them? rect = canvas.getLocalClipBounds(); REPORTER_ASSERT(reporter, rect.contains(SkRect::MakeWH(10, 10))); REPORTER_ASSERT(reporter, canvas.getLocalClipBounds(&rect2)); REPORTER_ASSERT(reporter, rect == rect2); canvas.clipRect(SkRect::MakeEmpty()); irect = canvas.getDeviceClipBounds(); REPORTER_ASSERT(reporter, irect == SkIRect::MakeEmpty()); REPORTER_ASSERT(reporter, !canvas.getDeviceClipBounds(&irect2)); REPORTER_ASSERT(reporter, irect == irect2); rect = canvas.getLocalClipBounds(); REPORTER_ASSERT(reporter, rect == SkRect::MakeEmpty()); REPORTER_ASSERT(reporter, !canvas.getLocalClipBounds(&rect2)); REPORTER_ASSERT(reporter, rect == rect2); // Test for wacky sizes that we (historically) have guarded against { SkCanvas c(-10, -20); REPORTER_ASSERT(reporter, c.getBaseLayerSize() == SkISize::MakeEmpty()); SkPictureRecorder().beginRecording({ 5, 5, 4, 4 }); } } // Will call proc with multiple styles of canvas (recording, raster, pdf) template static void multi_canvas_driver(int w, int h, F proc) { proc(SkPictureRecorder().beginRecording(SkRect::MakeIWH(w, h))); SkNullWStream stream; if (auto doc = SkPDF::MakeDocument(&stream)) { proc(doc->beginPage(SkIntToScalar(w), SkIntToScalar(h))); } proc(SkSurface::MakeRasterN32Premul(w, h, nullptr)->getCanvas()); } const SkIRect gBaseRestrictedR = { 0, 0, 10, 10 }; static void test_restriction(skiatest::Reporter* reporter, SkCanvas* canvas) { REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == gBaseRestrictedR); const SkIRect restrictionR = { 2, 2, 8, 8 }; canvas->androidFramework_setDeviceClipRestriction(restrictionR); REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == restrictionR); const SkIRect clipR = { 4, 4, 6, 6 }; canvas->clipRect(SkRect::Make(clipR), SkClipOp::kIntersect); REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == clipR); } /** * Clip restriction logic exists in the canvas itself, and in various kinds of devices. * * This test explicitly tries to exercise that variety: * - picture : empty device but exercises canvas itself * - pdf : uses SkClipStack in its device (as does SVG and GPU) * - raster : uses SkRasterClip in its device */ DEF_TEST(canvas_clip_restriction, reporter) { multi_canvas_driver(gBaseRestrictedR.width(), gBaseRestrictedR.height(), [reporter](SkCanvas* canvas) { test_restriction(reporter, canvas); }); } DEF_TEST(canvas_empty_clip, reporter) { multi_canvas_driver(50, 50, [reporter](SkCanvas* canvas) { canvas->save(); canvas->clipRect({0, 0, 20, 40 }); REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); canvas->clipRect({30, 0, 50, 40 }); REPORTER_ASSERT(reporter, canvas->isClipEmpty()); }); } DEF_TEST(CanvasNewRasterTest, reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10); const size_t minRowBytes = info.minRowBytes(); const size_t size = info.computeByteSize(minRowBytes); SkAutoTMalloc storage(size); SkPMColor* baseAddr = storage.get(); sk_bzero(baseAddr, size); std::unique_ptr canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes); REPORTER_ASSERT(reporter, canvas); SkPixmap pmap; const SkPMColor* addr = canvas->peekPixels(&pmap) ? pmap.addr32() : nullptr; REPORTER_ASSERT(reporter, addr); REPORTER_ASSERT(reporter, info == pmap.info()); REPORTER_ASSERT(reporter, minRowBytes == pmap.rowBytes()); for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { REPORTER_ASSERT(reporter, 0 == addr[x]); } addr = (const SkPMColor*)((const char*)addr + pmap.rowBytes()); } // unaligned rowBytes REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes + 1)); // now try a deliberately bad info info = info.makeWH(-1, info.height()); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // too big info = info.makeWH(1 << 30, 1 << 30); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // not a valid pixel type info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType()); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // We should not succeed with a zero-sized valid info info = SkImageInfo::MakeN32Premul(0, 0); canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes); REPORTER_ASSERT(reporter, nullptr == canvas); } static SkPath make_path_from_rect(SkRect r) { SkPath path; path.addRect(r); return path; } static SkRegion make_region_from_irect(SkIRect r) { SkRegion region; region.setRect(r); return region; } static SkBitmap make_n32_bitmap(int w, int h, SkColor c = SK_ColorWHITE) { SkBitmap bm; bm.allocN32Pixels(w, h); bm.eraseColor(c); return bm; } // Constants used by test steps static constexpr SkRect kRect = {0, 0, 2, 1}; static constexpr SkColor kColor = 0x01020304; static constexpr int kWidth = 2; static constexpr int kHeight = 2; using CanvasTest = void (*)(SkCanvas*, skiatest::Reporter*); static CanvasTest kCanvasTests[] = { [](SkCanvas* c, skiatest::Reporter* r) { c->translate(SkIntToScalar(1), SkIntToScalar(2)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->scale(SkIntToScalar(1), SkIntToScalar(2)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->rotate(SkIntToScalar(1)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->skew(SkIntToScalar(1), SkIntToScalar(2)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->concat(SkMatrix::Scale(2, 3)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->setMatrix(SkMatrix::Scale(2, 3)); }, [](SkCanvas* c, skiatest::Reporter* r) { c->clipRect(kRect); }, [](SkCanvas* c, skiatest::Reporter* r) { c->clipPath(make_path_from_rect(SkRect{0, 0, 2, 1})); }, [](SkCanvas* c, skiatest::Reporter* r) { c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1})); }, [](SkCanvas* c, skiatest::Reporter* r) { c->clear(kColor); }, [](SkCanvas* c, skiatest::Reporter* r) { int saveCount = c->getSaveCount(); c->save(); c->translate(SkIntToScalar(1), SkIntToScalar(2)); c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1})); c->restore(); REPORTER_ASSERT(r, c->getSaveCount() == saveCount); REPORTER_ASSERT(r, c->getTotalMatrix().isIdentity()); //REPORTER_ASSERT(reporter, c->getTotalClip() != kTestRegion); }, [](SkCanvas* c, skiatest::Reporter* r) { int saveCount = c->getSaveCount(); c->saveLayer(nullptr, nullptr); c->restore(); REPORTER_ASSERT(r, c->getSaveCount() == saveCount); }, [](SkCanvas* c, skiatest::Reporter* r) { int saveCount = c->getSaveCount(); c->saveLayer(&kRect, nullptr); c->restore(); REPORTER_ASSERT(r, c->getSaveCount() == saveCount); }, [](SkCanvas* c, skiatest::Reporter* r) { int saveCount = c->getSaveCount(); SkPaint p; c->saveLayer(nullptr, &p); c->restore(); REPORTER_ASSERT(r, c->getSaveCount() == saveCount); }, [](SkCanvas* c, skiatest::Reporter* r) { // This test exercises a functionality in SkPicture that leads to the // recording of restore offset placeholders. This test will trigger an // assertion at playback time if the placeholders are not properly // filled when the recording ends. c->clipRect(kRect); c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1})); }, [](SkCanvas* c, skiatest::Reporter* r) { // exercise fix for http://code.google.com/p/skia/issues/detail?id=560 // ('SkPathStroker::lineTo() fails for line with length SK_ScalarNearlyZero') SkPaint paint; paint.setStrokeWidth(SkIntToScalar(1)); paint.setStyle(SkPaint::kStroke_Style); SkPath path; path.moveTo(SkPoint{ 0, 0 }); path.lineTo(SkPoint{ 0, SK_ScalarNearlyZero }); path.lineTo(SkPoint{ SkIntToScalar(1), 0 }); path.lineTo(SkPoint{ SkIntToScalar(1), SK_ScalarNearlyZero/2 }); // test nearly zero length path c->drawPath(path, paint); }, [](SkCanvas* c, skiatest::Reporter* r) { SkPictureRecorder recorder; SkCanvas* testCanvas = recorder.beginRecording(SkIntToScalar(kWidth), SkIntToScalar(kHeight)); testCanvas->scale(SkIntToScalar(2), SkIntToScalar(1)); testCanvas->clipRect(kRect); testCanvas->drawRect(kRect, SkPaint()); c->drawPicture(recorder.finishRecordingAsPicture()); }, [](SkCanvas* c, skiatest::Reporter* r) { int baseSaveCount = c->getSaveCount(); int n = c->save(); REPORTER_ASSERT(r, baseSaveCount == n); REPORTER_ASSERT(r, baseSaveCount + 1 == c->getSaveCount()); c->save(); c->save(); REPORTER_ASSERT(r, baseSaveCount + 3 == c->getSaveCount()); c->restoreToCount(baseSaveCount + 1); REPORTER_ASSERT(r, baseSaveCount + 1 == c->getSaveCount()); // should this pin to 1, or be a no-op, or crash? c->restoreToCount(0); REPORTER_ASSERT(r, 1 == c->getSaveCount()); }, [](SkCanvas* c, skiatest::Reporter* r) { // This test step challenges the TestDeferredCanvasStateConsistency // test cases because the opaque paint can trigger an optimization // that discards previously recorded commands. The challenge is to maintain // correct clip and matrix stack state. c->resetMatrix(); c->rotate(SkIntToScalar(30)); c->save(); c->translate(SkIntToScalar(2), SkIntToScalar(1)); c->save(); c->scale(SkIntToScalar(3), SkIntToScalar(3)); SkPaint paint; paint.setColor(0xFFFFFFFF); c->drawPaint(paint); c->restore(); c->restore(); }, [](SkCanvas* c, skiatest::Reporter* r) { // This test step challenges the TestDeferredCanvasStateConsistency // test case because the canvas flush on a deferred canvas will // reset the recording session. The challenge is to maintain correct // clip and matrix stack state on the playback canvas. c->resetMatrix(); c->rotate(SkIntToScalar(30)); c->save(); c->translate(SkIntToScalar(2), SkIntToScalar(1)); c->save(); c->scale(SkIntToScalar(3), SkIntToScalar(3)); c->drawRect(kRect, SkPaint()); c->flush(); c->restore(); c->restore(); }, [](SkCanvas* c, skiatest::Reporter* r) { SkPoint pts[4]; pts[0].set(0, 0); pts[1].set(SkIntToScalar(kWidth), 0); pts[2].set(SkIntToScalar(kWidth), SkIntToScalar(kHeight)); pts[3].set(0, SkIntToScalar(kHeight)); SkPaint paint; SkBitmap bitmap(make_n32_bitmap(kWidth, kHeight, 0x05060708)); paint.setShader(bitmap.makeShader(SkSamplingOptions())); c->drawVertices( SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pts, pts, nullptr), SkBlendMode::kModulate, paint); } }; DEF_TEST(Canvas_bitmap, reporter) { for (const CanvasTest& test : kCanvasTests) { SkBitmap referenceStore = make_n32_bitmap(kWidth, kHeight); SkCanvas referenceCanvas(referenceStore); test(&referenceCanvas, reporter); } } DEF_TEST(Canvas_pdf, reporter) { for (const CanvasTest& test : kCanvasTests) { SkNullWStream outStream; if (auto doc = SkPDF::MakeDocument(&outStream)) { SkCanvas* canvas = doc->beginPage(SkIntToScalar(kWidth), SkIntToScalar(kHeight)); REPORTER_ASSERT(reporter, canvas); test(canvas, reporter); } } } DEF_TEST(Canvas_SaveState, reporter) { SkCanvas canvas(10, 10); REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount()); int n = canvas.save(); REPORTER_ASSERT(reporter, 1 == n); REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount()); n = canvas.saveLayer(nullptr, nullptr); REPORTER_ASSERT(reporter, 2 == n); REPORTER_ASSERT(reporter, 3 == canvas.getSaveCount()); canvas.restore(); REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount()); canvas.restore(); REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount()); } DEF_TEST(Canvas_ClipEmptyPath, reporter) { SkCanvas canvas(10, 10); canvas.save(); SkPath path; canvas.clipPath(path); canvas.restore(); canvas.save(); path.moveTo(5, 5); canvas.clipPath(path); canvas.restore(); canvas.save(); path.moveTo(7, 7); canvas.clipPath(path); // should not assert here canvas.restore(); } namespace { class MockFilterCanvas : public SkPaintFilterCanvas { public: MockFilterCanvas(SkCanvas* canvas) : INHERITED(canvas) { } protected: bool onFilter(SkPaint&) const override { return true; } private: using INHERITED = SkPaintFilterCanvas; }; } // anonymous namespace // SkPaintFilterCanvas should inherit the initial target canvas state. DEF_TEST(PaintFilterCanvas_ConsistentState, reporter) { SkCanvas canvas(100, 100); canvas.clipRect(SkRect::MakeXYWH(12.7f, 12.7f, 75, 75)); canvas.scale(0.5f, 0.75f); MockFilterCanvas filterCanvas(&canvas); REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix()); REPORTER_ASSERT(reporter, canvas.getLocalClipBounds() == filterCanvas.getLocalClipBounds()); filterCanvas.clipRect(SkRect::MakeXYWH(30.5f, 30.7f, 100, 100)); filterCanvas.scale(0.75f, 0.5f); REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix()); REPORTER_ASSERT(reporter, filterCanvas.getLocalClipBounds().contains(canvas.getLocalClipBounds())); } /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { // Subclass that takes a bool*, which it updates in its construct (true) and destructor (false) // to allow the caller to know how long the object is alive. class LifeLineCanvas : public SkCanvas { bool* fLifeLine; public: LifeLineCanvas(int w, int h, bool* lifeline) : SkCanvas(w, h), fLifeLine(lifeline) { *fLifeLine = true; } ~LifeLineCanvas() override { *fLifeLine = false; } }; } // namespace // Check that NWayCanvas does NOT try to manage the lifetime of its sub-canvases DEF_TEST(NWayCanvas, r) { const int w = 10; const int h = 10; bool life[2]; { LifeLineCanvas c0(w, h, &life[0]); REPORTER_ASSERT(r, life[0]); } REPORTER_ASSERT(r, !life[0]); std::unique_ptr c0 = std::unique_ptr(new LifeLineCanvas(w, h, &life[0])); std::unique_ptr c1 = std::unique_ptr(new LifeLineCanvas(w, h, &life[1])); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); { SkNWayCanvas nway(w, h); nway.addCanvas(c0.get()); nway.addCanvas(c1.get()); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Now assert that the death of the nway has NOT also killed the sub-canvases REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Check that CanvasStack DOES manage the lifetime of its sub-canvases DEF_TEST(CanvasStack, r) { const int w = 10; const int h = 10; bool life[2]; std::unique_ptr c0 = std::unique_ptr(new LifeLineCanvas(w, h, &life[0])); std::unique_ptr c1 = std::unique_ptr(new LifeLineCanvas(w, h, &life[1])); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); { SkCanvasStack stack(w, h); stack.pushCanvas(std::move(c0), {0,0}); stack.pushCanvas(std::move(c1), {0,0}); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Now assert that the death of the canvasstack has also killed the sub-canvases REPORTER_ASSERT(r, !life[0]); REPORTER_ASSERT(r, !life[1]); } static void test_cliptype(SkCanvas* canvas, skiatest::Reporter* r) { REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); canvas->save(); canvas->clipRect({0, 0, 0, 0}); REPORTER_ASSERT(r, canvas->isClipEmpty()); REPORTER_ASSERT(r, !canvas->isClipRect()); canvas->restore(); canvas->save(); canvas->clipRect({2, 2, 6, 6}); REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); canvas->restore(); canvas->save(); canvas->clipRect({2, 2, 6, 6}, SkClipOp::kDifference); // punch a hole in the clip REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, !canvas->isClipRect()); canvas->restore(); REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); } DEF_TEST(CanvasClipType, r) { // test rasterclip backend test_cliptype(SkSurface::MakeRasterN32Premul(10, 10)->getCanvas(), r); // test clipstack backend SkDynamicMemoryWStream stream; if (auto doc = SkPDF::MakeDocument(&stream)) { test_cliptype(doc->beginPage(100, 100), r); } } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK DEF_TEST(Canvas_LegacyColorBehavior, r) { sk_sp cs = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kAdobeRGB); // Make a Adobe RGB bitmap. SkBitmap bitmap; bitmap.allocPixels(SkImageInfo::MakeN32(1, 1, kOpaque_SkAlphaType, cs)); bitmap.eraseColor(0xFF000000); // Wrap it in a legacy canvas. Test that the canvas behaves like a legacy canvas. SkCanvas canvas(bitmap, SkCanvas::ColorBehavior::kLegacy); REPORTER_ASSERT(r, !canvas.imageInfo().colorSpace()); SkPaint p; p.setColor(SK_ColorRED); canvas.drawIRect(SkIRect::MakeWH(1, 1), p); REPORTER_ASSERT(r, SK_ColorRED == SkSwizzle_BGRA_to_PMColor(*bitmap.getAddr32(0, 0))); } #endif namespace { class ZeroBoundsImageFilter : public SkImageFilter_Base { public: static sk_sp Make() { return sk_sp(new ZeroBoundsImageFilter); } protected: sk_sp onFilterImage(const Context&, SkIPoint*) const override { return nullptr; } SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix&, MapDirection, const SkIRect* inputRect) const override { return SkIRect::MakeEmpty(); } private: SK_FLATTENABLE_HOOKS(ZeroBoundsImageFilter) ZeroBoundsImageFilter() : INHERITED(nullptr, 0, nullptr) {} using INHERITED = SkImageFilter_Base; }; sk_sp ZeroBoundsImageFilter::CreateProc(SkReadBuffer& buffer) { SkDEBUGFAIL("Should never get here"); return nullptr; } } // anonymous namespace DEF_TEST(Canvas_SaveLayerWithNullBoundsAndZeroBoundsImageFilter, r) { SkCanvas canvas(10, 10); SkPaint p; p.setImageFilter(ZeroBoundsImageFilter::Make()); // This should not fail any assert. canvas.saveLayer(nullptr, &p); REPORTER_ASSERT(r, canvas.getDeviceClipBounds().isEmpty()); canvas.restore(); } // Test that we don't crash/assert when building a canvas with degenerate coordintes // (esp. big ones, that might invoke tiling). DEF_TEST(Canvas_degenerate_dimension, reporter) { // Need a paint that will sneak us past the quickReject in SkCanvas, so we can test the // raster code further downstream. SkPaint paint; paint.setImageFilter(SkImageFilters::Shader(SkShaders::Color(SK_ColorBLACK), nullptr)); REPORTER_ASSERT(reporter, !paint.canComputeFastBounds()); const int big = 100 * 1024; // big enough to definitely trigger tiling const SkISize sizes[] {SkISize{0, big}, {big, 0}, {0, 0}}; for (SkISize size : sizes) { SkBitmap bm; bm.setInfo(SkImageInfo::MakeN32Premul(size.width(), size.height())); SkCanvas canvas(bm); canvas.drawRect({0, 0, 100, 90*1024}, paint); } } DEF_TEST(Canvas_ClippedOutImageFilter, reporter) { SkCanvas canvas(100, 100); SkPaint p; p.setColor(SK_ColorGREEN); p.setImageFilter(SkImageFilters::Blur(3.0f, 3.0f, nullptr, nullptr)); SkRect blurredRect = SkRect::MakeXYWH(60, 10, 30, 30); SkMatrix invM; invM.setRotate(-45); invM.mapRect(&blurredRect); const SkRect clipRect = SkRect::MakeXYWH(0, 50, 50, 50); canvas.clipRect(clipRect); canvas.rotate(45); const SkMatrix preCTM = canvas.getTotalMatrix(); canvas.drawRect(blurredRect, p); const SkMatrix postCTM = canvas.getTotalMatrix(); REPORTER_ASSERT(reporter, preCTM == postCTM); } DEF_TEST(canvas_markctm, reporter) { SkCanvas canvas(10, 10); SkM44 m; const char* id_a = "a"; const char* id_b = "b"; REPORTER_ASSERT(reporter, !canvas.findMarkedCTM(id_a, nullptr)); REPORTER_ASSERT(reporter, !canvas.findMarkedCTM(id_b, nullptr)); // remember the starting state SkM44 b = canvas.getLocalToDevice(); canvas.markCTM(id_b); // test add canvas.concat(SkM44::Scale(2, 4, 6)); SkM44 a = canvas.getLocalToDevice(); canvas.markCTM(id_a); REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_a, &m) && m == a); // test replace canvas.translate(1, 2); SkM44 a1 = canvas.getLocalToDevice(); SkASSERT(a != a1); canvas.markCTM(id_a); REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_a, &m) && m == a1); // test nested canvas.save(); // no change REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_b, &m) && m == b); REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_a, &m) && m == a1); canvas.translate(2, 3); SkM44 a2 = canvas.getLocalToDevice(); SkASSERT(a2 != a1); canvas.markCTM(id_a); // found the new one REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_a, &m) && m == a2); canvas.restore(); // found the previous one REPORTER_ASSERT(reporter, canvas.findMarkedCTM(id_a, &m) && m == a1); } DEF_TEST(canvas_savelayer_destructor, reporter) { // What should happen in our destructor if we have unbalanced saveLayers? SkPMColor pixels[16]; const SkImageInfo info = SkImageInfo::MakeN32Premul(4, 4); SkPixmap pm(info, pixels, 4 * sizeof(SkPMColor)); // check all of the pixel values in pm auto check_pixels = [&](SkColor expected) { const SkPMColor pmc = SkPreMultiplyColor(expected); for (int y = 0; y < pm.info().height(); ++y) { for (int x = 0; x < pm.info().width(); ++x) { REPORTER_ASSERT(reporter, *pm.addr32(x, y) == pmc); } } }; auto do_test = [&](bool doRestore) { auto surf = SkSurface::MakeRasterDirect(pm); auto canvas = surf->getCanvas(); canvas->clear(SK_ColorRED); check_pixels(SK_ColorRED); canvas->saveLayer(nullptr, nullptr); canvas->clear(SK_ColorBLUE); // so far, we still expect to see the red check_pixels(SK_ColorRED); if (doRestore) { canvas->restore(); } // by returning, we are implicitly deleting the surface, and its associated canvas }; do_test(true); // since we called restore, we expect to see now see blue check_pixels(SK_ColorBLUE); // Now we're repeat that, but delete the canvas before we restore it do_test(false); // *if* we restore the layers in the destructor, we expect to see blue, even though // we didn't call restore() as a client. check_pixels(SK_ColorBLUE); }