/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTArray_DEFINED #define SkTArray_DEFINED #include "../private/SkTLogic.h" #include "../private/SkTemplates.h" #include "SkTypes.h" #include #include /** When MEM_MOVE is true T will be bit copied when moved. When MEM_MOVE is false, T will be copy constructed / destructed. In all cases T will be default-initialized on allocation, and its destructor will be called from this object's destructor. */ template class SkTArray { public: /** * Creates an empty array with no initial storage */ SkTArray() { this->init(); } /** * Creates an empty array that will preallocate space for reserveCount * elements. */ explicit SkTArray(int reserveCount) { this->init(0, reserveCount); } /** * Copies one array to another. The new array will be heap allocated. */ explicit SkTArray(const SkTArray& that) { this->init(that.fCount); this->copy(that.fItemArray); } explicit SkTArray(SkTArray&& that) { // TODO: If 'that' owns its memory why don't we just steal the pointer? this->init(that.fCount); that.move(fMemArray); that.fCount = 0; } /** * Creates a SkTArray by copying contents of a standard C array. The new * array will be heap allocated. Be careful not to use this constructor * when you really want the (void*, int) version. */ SkTArray(const T* array, int count) { this->init(count); this->copy(array); } SkTArray& operator=(const SkTArray& that) { if (this == &that) { return *this; } for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } fCount = 0; this->checkRealloc(that.count()); fCount = that.count(); this->copy(that.fItemArray); return *this; } SkTArray& operator=(SkTArray&& that) { if (this == &that) { return *this; } for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } fCount = 0; this->checkRealloc(that.count()); fCount = that.count(); that.move(fMemArray); that.fCount = 0; return *this; } ~SkTArray() { for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } if (fOwnMemory) { sk_free(fMemArray); } } /** * Resets to count() == 0 and resets any reserve count. */ void reset() { this->pop_back_n(fCount); fReserved = false; } /** * Resets to count() = n newly constructed T objects and resets any reserve count. */ void reset(int n) { SkASSERT(n >= 0); for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } // Set fCount to 0 before calling checkRealloc so that no elements are moved. fCount = 0; this->checkRealloc(n); fCount = n; for (int i = 0; i < fCount; ++i) { new (fItemArray + i) T; } fReserved = false; } /** * Resets to a copy of a C array and resets any reserve count. */ void reset(const T* array, int count) { for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } fCount = 0; this->checkRealloc(count); fCount = count; this->copy(array); fReserved = false; } /** * Ensures there is enough reserved space for n additional elements. The is guaranteed at least * until the array size grows above n and subsequently shrinks below n, any version of reset() * is called, or reserve() is called again. */ void reserve(int n) { SkASSERT(n >= 0); if (n > 0) { this->checkRealloc(n); fReserved = fOwnMemory; } else { fReserved = false; } } void removeShuffle(int n) { SkASSERT(n < fCount); int newCount = fCount - 1; fCount = newCount; fItemArray[n].~T(); if (n != newCount) { this->move(n, newCount); } } /** * Number of elements in the array. */ int count() const { return fCount; } /** * Is the array empty. */ bool empty() const { return !fCount; } /** * Adds 1 new default-initialized T value and returns it by reference. Note * the reference only remains valid until the next call that adds or removes * elements. */ T& push_back() { void* newT = this->push_back_raw(1); return *new (newT) T; } /** * Version of above that uses a copy constructor to initialize the new item */ T& push_back(const T& t) { void* newT = this->push_back_raw(1); return *new (newT) T(t); } /** * Version of above that uses a move constructor to initialize the new item */ T& push_back(T&& t) { void* newT = this->push_back_raw(1); return *new (newT) T(std::move(t)); } /** * Construct a new T at the back of this array. */ template T& emplace_back(Args&&... args) { void* newT = this->push_back_raw(1); return *new (newT) T(std::forward(args)...); } /** * Allocates n more default-initialized T values, and returns the address of * the start of that new range. Note: this address is only valid until the * next API call made on the array that might add or remove elements. */ T* push_back_n(int n) { SkASSERT(n >= 0); void* newTs = this->push_back_raw(n); for (int i = 0; i < n; ++i) { new (static_cast(newTs) + i * sizeof(T)) T; } return static_cast(newTs); } /** * Version of above that uses a copy constructor to initialize all n items * to the same T. */ T* push_back_n(int n, const T& t) { SkASSERT(n >= 0); void* newTs = this->push_back_raw(n); for (int i = 0; i < n; ++i) { new (static_cast(newTs) + i * sizeof(T)) T(t); } return static_cast(newTs); } /** * Version of above that uses a copy constructor to initialize the n items * to separate T values. */ T* push_back_n(int n, const T t[]) { SkASSERT(n >= 0); this->checkRealloc(n); for (int i = 0; i < n; ++i) { new (fItemArray + fCount + i) T(t[i]); } fCount += n; return fItemArray + fCount - n; } /** * Version of above that uses the move constructor to set n items. */ T* move_back_n(int n, T* t) { SkASSERT(n >= 0); this->checkRealloc(n); for (int i = 0; i < n; ++i) { new (fItemArray + fCount + i) T(std::move(t[i])); } fCount += n; return fItemArray + fCount - n; } /** * Removes the last element. Not safe to call when count() == 0. */ void pop_back() { SkASSERT(fCount > 0); --fCount; fItemArray[fCount].~T(); this->checkRealloc(0); } /** * Removes the last n elements. Not safe to call when count() < n. */ void pop_back_n(int n) { SkASSERT(n >= 0); SkASSERT(fCount >= n); fCount -= n; for (int i = 0; i < n; ++i) { fItemArray[fCount + i].~T(); } this->checkRealloc(0); } /** * Pushes or pops from the back to resize. Pushes will be default * initialized. */ void resize_back(int newCount) { SkASSERT(newCount >= 0); if (newCount > fCount) { this->push_back_n(newCount - fCount); } else if (newCount < fCount) { this->pop_back_n(fCount - newCount); } } /** Swaps the contents of this array with that array. Does a pointer swap if possible, otherwise copies the T values. */ void swap(SkTArray* that) { if (this == that) { return; } if (fOwnMemory && that->fOwnMemory) { SkTSwap(fItemArray, that->fItemArray); SkTSwap(fCount, that->fCount); SkTSwap(fAllocCount, that->fAllocCount); } else { // This could be more optimal... SkTArray copy(std::move(*that)); *that = std::move(*this); *this = std::move(copy); } } T* begin() { return fItemArray; } const T* begin() const { return fItemArray; } T* end() { return fItemArray ? fItemArray + fCount : NULL; } const T* end() const { return fItemArray ? fItemArray + fCount : NULL; } /** * Get the i^th element. */ T& operator[] (int i) { SkASSERT(i < fCount); SkASSERT(i >= 0); return fItemArray[i]; } const T& operator[] (int i) const { SkASSERT(i < fCount); SkASSERT(i >= 0); return fItemArray[i]; } /** * equivalent to operator[](0) */ T& front() { SkASSERT(fCount > 0); return fItemArray[0];} const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} /** * equivalent to operator[](count() - 1) */ T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} /** * equivalent to operator[](count()-1-i) */ T& fromBack(int i) { SkASSERT(i >= 0); SkASSERT(i < fCount); return fItemArray[fCount - i - 1]; } const T& fromBack(int i) const { SkASSERT(i >= 0); SkASSERT(i < fCount); return fItemArray[fCount - i - 1]; } bool operator==(const SkTArray& right) const { int leftCount = this->count(); if (leftCount != right.count()) { return false; } for (int index = 0; index < leftCount; ++index) { if (fItemArray[index] != right.fItemArray[index]) { return false; } } return true; } bool operator!=(const SkTArray& right) const { return !(*this == right); } inline int allocCntForTest() const; protected: /** * Creates an empty array that will use the passed storage block until it * is insufficiently large to hold the entire array. */ template SkTArray(SkAlignedSTStorage* storage) { this->initWithPreallocatedStorage(0, storage->get(), N); } /** * Copy another array, using preallocated storage if preAllocCount >= * array.count(). Otherwise storage will only be used when array shrinks * to fit. */ template SkTArray(const SkTArray& array, SkAlignedSTStorage* storage) { this->initWithPreallocatedStorage(array.fCount, storage->get(), N); this->copy(array.fItemArray); } /** * Move another array, using preallocated storage if preAllocCount >= * array.count(). Otherwise storage will only be used when array shrinks * to fit. */ template SkTArray(SkTArray&& array, SkAlignedSTStorage* storage) { this->initWithPreallocatedStorage(array.fCount, storage->get(), N); array.move(fMemArray); array.fCount = 0; } /** * Copy a C array, using preallocated storage if preAllocCount >= * count. Otherwise storage will only be used when array shrinks * to fit. */ template SkTArray(const T* array, int count, SkAlignedSTStorage* storage) { this->initWithPreallocatedStorage(count, storage->get(), N); this->copy(array); } private: void init(int count = 0, int reserveCount = 0) { SkASSERT(count >= 0); SkASSERT(reserveCount >= 0); fCount = count; if (!count && !reserveCount) { fAllocCount = 0; fMemArray = nullptr; fOwnMemory = false; fReserved = false; } else { fAllocCount = SkTMax(count, SkTMax(kMinHeapAllocCount, reserveCount)); fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); fOwnMemory = true; fReserved = reserveCount > 0; } } void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) { SkASSERT(count >= 0); SkASSERT(preallocCount > 0); SkASSERT(preallocStorage); fCount = count; fMemArray = nullptr; fReserved = false; if (count > preallocCount) { fAllocCount = SkTMax(count, kMinHeapAllocCount); fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); fOwnMemory = true; } else { fAllocCount = preallocCount; fMemArray = preallocStorage; fOwnMemory = false; } } /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage. * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage. */ void copy(const T* src) { // Some types may be trivially copyable, in which case we *could* use memcopy; but // MEM_MOVE == true implies that the type is trivially movable, and not necessarily // trivially copyable (think sk_sp<>). So short of adding another template arg, we // must be conservative and use copy construction. for (int i = 0; i < fCount; ++i) { new (fItemArray + i) T(src[i]); } } template SK_WHEN(E, void) move(int dst, int src) { memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T)); } template SK_WHEN(E, void) move(void* dst) { sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T)); } template SK_WHEN(!E, void) move(int dst, int src) { new (&fItemArray[dst]) T(std::move(fItemArray[src])); fItemArray[src].~T(); } template SK_WHEN(!E, void) move(void* dst) { for (int i = 0; i < fCount; ++i) { new (static_cast(dst) + sizeof(T) * i) T(std::move(fItemArray[i])); fItemArray[i].~T(); } } static constexpr int kMinHeapAllocCount = 8; // Helper function that makes space for n objects, adjusts the count, but does not initialize // the new objects. void* push_back_raw(int n) { this->checkRealloc(n); void* ptr = fItemArray + fCount; fCount += n; return ptr; } void checkRealloc(int delta) { SkASSERT(fCount >= 0); SkASSERT(fAllocCount >= 0); SkASSERT(-delta <= fCount); int newCount = fCount + delta; // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink // when we're currently using preallocated memory, would allocate less than // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded. bool mustGrow = newCount > fAllocCount; bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved; if (!mustGrow && !shouldShrink) { return; } // Whether we're growing or shrinking, we leave at least 50% extra space for future growth. int newAllocCount = newCount + ((newCount + 1) >> 1); // Align the new allocation count to kMinHeapAllocCount. static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two."); newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1); // At small sizes the old and new alloc count can both be kMinHeapAllocCount. if (newAllocCount == fAllocCount) { return; } fAllocCount = newAllocCount; void* newMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); this->move(newMemArray); if (fOwnMemory) { sk_free(fMemArray); } fMemArray = newMemArray; fOwnMemory = true; fReserved = false; } union { T* fItemArray; void* fMemArray; }; int fCount; int fAllocCount; bool fOwnMemory : 1; bool fReserved : 1; }; template constexpr int SkTArray::kMinHeapAllocCount; /** * Subclass of SkTArray that contains a preallocated memory block for the array. */ template class SkSTArray : public SkTArray { private: typedef SkTArray INHERITED; public: SkSTArray() : INHERITED(&fStorage) { } SkSTArray(const SkSTArray& array) : INHERITED(array, &fStorage) { } SkSTArray(SkSTArray&& array) : INHERITED(std::move(array), &fStorage) { } explicit SkSTArray(const INHERITED& array) : INHERITED(array, &fStorage) { } explicit SkSTArray(INHERITED&& array) : INHERITED(std::move(array), &fStorage) { } explicit SkSTArray(int reserveCount) : INHERITED(reserveCount) { } SkSTArray(const T* array, int count) : INHERITED(array, count, &fStorage) { } SkSTArray& operator=(const SkSTArray& array) { INHERITED::operator=(array); return *this; } SkSTArray& operator=(SkSTArray&& array) { INHERITED::operator=(std::move(array)); return *this; } SkSTArray& operator=(const INHERITED& array) { INHERITED::operator=(array); return *this; } SkSTArray& operator=(INHERITED&& array) { INHERITED::operator=(std::move(array)); return *this; } private: SkAlignedSTStorage fStorage; }; #endif