/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This test only works with the GPU backend. #include "gm.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "gl/GrGLInterface.h" #include "gl/GrGLUtil.h" #include "GrTest.h" #include "SkBitmap.h" #include "SkGradientShader.h" #include "SkImage.h" namespace skiagm { class ImageFromYUVTextures : public GM { public: ImageFromYUVTextures() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() override { return SkString("image_from_yuv_textures"); } SkISize onISize() override { return SkISize::Make(50, 135); } void onOnceBeforeDraw() override { // We create an RGB bitmap and then extract YUV bmps where the U and V bitmaps are // subsampled by 2 in both dimensions. SkPaint paint; static const SkColor kColors[] = { SK_ColorBLUE, SK_ColorYELLOW, SK_ColorGREEN, SK_ColorWHITE }; paint.setShader(SkGradientShader::CreateRadial(SkPoint::Make(0,0), kBmpSize / 2.f, kColors, NULL, SK_ARRAY_COUNT(kColors), SkShader::kMirror_TileMode))->unref(); SkBitmap rgbBmp; rgbBmp.allocN32Pixels(kBmpSize, kBmpSize, true); SkCanvas canvas(rgbBmp); canvas.drawPaint(paint); SkPMColor* rgbColors = static_cast(rgbBmp.getPixels()); SkImageInfo yinfo = SkImageInfo::MakeA8(kBmpSize, kBmpSize); fYUVBmps[0].allocPixels(yinfo); SkImageInfo uinfo = SkImageInfo::MakeA8(kBmpSize / 2, kBmpSize / 2); fYUVBmps[1].allocPixels(uinfo); SkImageInfo vinfo = SkImageInfo::MakeA8(kBmpSize / 2, kBmpSize / 2); fYUVBmps[2].allocPixels(vinfo); unsigned char* yPixels; signed char* uvPixels[2]; yPixels = static_cast(fYUVBmps[0].getPixels()); uvPixels[0] = static_cast(fYUVBmps[1].getPixels()); uvPixels[1] = static_cast(fYUVBmps[2 ].getPixels()); // Here we encode using the NTC encoding (even though we will draw it with all the supported // yuv color spaces when converted back to RGB) for (int i = 0; i < kBmpSize * kBmpSize; ++i) { yPixels[i] = static_cast(0.299f * SkGetPackedR32(rgbColors[i]) + 0.587f * SkGetPackedG32(rgbColors[i]) + 0.114f * SkGetPackedB32(rgbColors[i])); } for (int j = 0; j < kBmpSize / 2; ++j) { for (int i = 0; i < kBmpSize / 2; ++i) { // Average together 4 pixels of RGB. int rgb[] = { 0, 0, 0 }; for (int y = 0; y < 2; ++y) { for (int x = 0; x < 2; ++x) { int rgbIndex = (2 * j + y) * kBmpSize + 2 * i + x; rgb[0] += SkGetPackedR32(rgbColors[rgbIndex]); rgb[1] += SkGetPackedG32(rgbColors[rgbIndex]); rgb[2] += SkGetPackedB32(rgbColors[rgbIndex]); } } for (int c = 0; c < 3; ++c) { rgb[c] /= 4; } int uvIndex = j * kBmpSize / 2 + i; uvPixels[0][uvIndex] = static_cast( ((-38 * rgb[0] - 74 * rgb[1] + 112 * rgb[2] + 128) >> 8) + 128); uvPixels[1][uvIndex] = static_cast( ((112 * rgb[0] - 94 * rgb[1] - 18 * rgb[2] + 128) >> 8) + 128); } } fRGBImage.reset(SkImage::NewRasterCopy(rgbBmp.info(), rgbColors, rgbBmp.rowBytes())); } void createYUVTextures(GrContext* context, GrGLuint yuvIDs[3]) { GrTestTarget tt; context->getTestTarget(&tt); if (!tt.target()) { SkDEBUGFAIL("Couldn't get Gr test target."); return; } // We currently hav only implemented the texture uploads for GL. const GrGLInterface* gl = tt.glContext()->interface(); if (!gl) { return; } GR_GL_CALL(gl, GenTextures(3, yuvIDs)); GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0)); GR_GL_CALL(gl, PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); for (int i = 0; i < 3; ++i) { GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, yuvIDs[i])); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); SkASSERT(fYUVBmps[i].width() == SkToInt(fYUVBmps[i].rowBytes())); GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RED, fYUVBmps[i].width(), fYUVBmps[i].height(), 0, GR_GL_RED, GR_GL_UNSIGNED_BYTE, fYUVBmps[i].getPixels())); } context->resetContext(); } void deleteYUVTextures(GrContext* context, const GrGLuint yuvIDs[3]) { GrTestTarget tt; context->getTestTarget(&tt); if (!tt.target()) { SkDEBUGFAIL("Couldn't get Gr test target."); return; } const GrGLInterface* gl = tt.glContext()->interface(); if (!gl) { return; } GR_GL_CALL(gl, DeleteTextures(3, yuvIDs)); context->resetContext(); } void onDraw(SkCanvas* canvas) override { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); GrContext* context; if (!rt || !(context = rt->getContext())) { this->drawGpuOnlyMessage(canvas); return; } GrGLuint yuvIDs[3]; this->createYUVTextures(context, yuvIDs); static const SkScalar kPad = 10.f; GrBackendObject backendTextureObjects[] = { static_cast(yuvIDs[0]), static_cast(yuvIDs[1]), static_cast(yuvIDs[2]) }; SkISize sizes[] = { { fYUVBmps[0].width(), fYUVBmps[0].height()}, { fYUVBmps[1].width(), fYUVBmps[1].height()}, { fYUVBmps[2].width(), fYUVBmps[2].height()}, }; SkTArray images; images.push_back(SkRef(fRGBImage.get())); for (int space = kJPEG_SkYUVColorSpace; space <= kLastEnum_SkYUVColorSpace; ++space) { images.push_back(SkImage::NewFromYUVTexturesCopy(context, static_cast(space), backendTextureObjects, sizes, kTopLeft_GrSurfaceOrigin)); } this->deleteYUVTextures(context, yuvIDs); for (int i = 0; i < images.count(); ++ i) { SkScalar y = (i + 1) * kPad + i * fYUVBmps[0].height(); SkScalar x = kPad; canvas->drawImage(images[i], x, y); images[i]->unref(); images[i] = NULL; } } private: SkAutoTUnref fRGBImage; SkBitmap fYUVBmps[3]; static const int kBmpSize = 32; typedef GM INHERITED; }; DEF_GM( return SkNEW(ImageFromYUVTextures); ) } #endif