/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkScalar.h" #include "src/gpu/geometry/GrQuad.h" #include "src/gpu/geometry/GrQuadUtils.h" #include "tests/Test.h" #define ASSERT(cond) REPORTER_ASSERT(r, cond) #define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__) #define TEST(name) DEF_TEST(GrQuadCrop##name, r) #define ASSERT_NEARLY_EQUAL(expected, actual) \ ASSERTF(SkScalarNearlyEqual(expected, actual), "expected: %f, actual: %f", \ expected, actual) // Make the base rect contain the origin and have unique edge values so that each transform // produces a different axis-aligned rectangle. static const SkRect kDrawRect = SkRect::MakeLTRB(-5.f, -6.f, 10.f, 11.f); static void run_crop_axis_aligned_test(skiatest::Reporter* r, const SkRect& clipRect, GrAA clipAA, const SkMatrix& viewMatrix, const SkMatrix* localMatrix) { // Should use run_crop_fully_covers_test for non-rect matrices SkASSERT(viewMatrix.rectStaysRect()); DrawQuad quad = {GrQuad::MakeFromRect(kDrawRect, viewMatrix), GrQuad::MakeFromRect(kDrawRect, localMatrix ? *localMatrix : SkMatrix::I()), clipAA == GrAA::kYes ? GrQuadAAFlags::kNone : GrQuadAAFlags::kAll}; bool exact = GrQuadUtils::CropToRect(clipRect, clipAA, &quad, /* calc. locals */ !!localMatrix); ASSERTF(exact, "Expected exact crop"); ASSERTF(quad.fDevice.quadType() == GrQuad::Type::kAxisAligned, "Expected quad to remain axis-aligned"); // Since we remained a rectangle, the bounds will exactly match the coordinates SkRect expectedBounds = viewMatrix.mapRect(kDrawRect); SkAssertResult(expectedBounds.intersect(clipRect)); SkRect actualBounds = quad.fDevice.bounds(); ASSERT_NEARLY_EQUAL(expectedBounds.fLeft, actualBounds.fLeft); ASSERT_NEARLY_EQUAL(expectedBounds.fTop, actualBounds.fTop); ASSERT_NEARLY_EQUAL(expectedBounds.fRight, actualBounds.fRight); ASSERT_NEARLY_EQUAL(expectedBounds.fBottom, actualBounds.fBottom); // Confirm that local coordinates match up with clipped edges and the transform SkMatrix invViewMatrix; SkAssertResult(viewMatrix.invert(&invViewMatrix)); if (localMatrix) { SkMatrix toLocal = SkMatrix::Concat(*localMatrix, invViewMatrix); for (int p = 0; p < 4; ++p) { SkPoint expectedPoint = quad.fDevice.point(p); toLocal.mapPoints(&expectedPoint, 1); SkPoint actualPoint = quad.fLocal.point(p); ASSERT_NEARLY_EQUAL(expectedPoint.fX, actualPoint.fX); ASSERT_NEARLY_EQUAL(expectedPoint.fY, actualPoint.fY); } } // Confirm that the edge flags match, by mapping clip rect to drawRect space and // comparing to the original draw rect edges SkRect drawClip = invViewMatrix.mapRect(clipRect); if (drawClip.fLeft > kDrawRect.fLeft) { if (clipAA == GrAA::kYes) { ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kLeft, "Expected left edge AA set"); } else { ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kLeft), "Expected left edge AA unset"); } } if (drawClip.fRight < kDrawRect.fRight) { if (clipAA == GrAA::kYes) { ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kRight, "Expected right edge AA set"); } else { ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kRight), "Expected right edge AA unset"); } } if (drawClip.fTop > kDrawRect.fTop) { if (clipAA == GrAA::kYes) { ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kTop, "Expected top edge AA set"); } else { ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kTop), "Expected top edge AA unset"); } } if (drawClip.fBottom < kDrawRect.fBottom) { if (clipAA == GrAA::kYes) { ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kBottom, "Expected bottom edge AA set"); } else { ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kBottom), "Expected bottom edge AA unset"); } } } static void run_crop_fully_covered_test(skiatest::Reporter* r, GrAA clipAA, const SkMatrix& viewMatrix, const SkMatrix* localMatrix) { // Should use run_crop_axis_aligned for rect transforms since that verifies more behavior SkASSERT(!viewMatrix.rectStaysRect()); // Test what happens when the geometry fully covers the crop rect. Given a fixed crop, // use the provided view matrix to derive the "input" geometry that we know covers the crop. SkMatrix invViewMatrix; SkAssertResult(viewMatrix.invert(&invViewMatrix)); SkRect containsCrop = kDrawRect; // Use kDrawRect as the crop rect for this test containsCrop.outset(10.f, 10.f); SkRect drawRect = invViewMatrix.mapRect(containsCrop); DrawQuad quad = {GrQuad::MakeFromRect(drawRect, viewMatrix), GrQuad::MakeFromRect(drawRect, localMatrix ? *localMatrix : SkMatrix::I()), clipAA == GrAA::kYes ? GrQuadAAFlags::kNone : GrQuadAAFlags::kAll}; if (localMatrix) { DrawQuad originalQuad = quad; bool exact = GrQuadUtils::CropToRect(kDrawRect, clipAA, &quad); // Currently non-rect matrices don't know how to update local coordinates, so the crop // doesn't know how to restrict itself and should leave the inputs unmodified ASSERTF(!exact, "Expected crop to be not exact"); ASSERTF(quad.fEdgeFlags == originalQuad.fEdgeFlags, "Expected edge flags not to be modified"); for (int i = 0; i < 4; ++i) { ASSERT_NEARLY_EQUAL(originalQuad.fDevice.x(i), quad.fDevice.x(i)); ASSERT_NEARLY_EQUAL(originalQuad.fDevice.y(i), quad.fDevice.y(i)); ASSERT_NEARLY_EQUAL(originalQuad.fDevice.w(i), quad.fDevice.w(i)); ASSERT_NEARLY_EQUAL(originalQuad.fLocal.x(i), quad.fLocal.x(i)); ASSERT_NEARLY_EQUAL(originalQuad.fLocal.y(i), quad.fLocal.y(i)); ASSERT_NEARLY_EQUAL(originalQuad.fLocal.w(i), quad.fLocal.w(i)); } } else { // Since no local coordinates were provided, and the input draw geometry is known to // fully cover the crop rect, the quad should be updated to match cropRect exactly, // unless it's perspective in which case we don't do anything since the code isn't // numerically robust enough. DrawQuad originalQuad = quad; bool exact = GrQuadUtils::CropToRect(kDrawRect, clipAA, &quad, /* calc. local */ false); if (originalQuad.fDevice.quadType() == GrQuad::Type::kPerspective) { ASSERTF(!exact, "Expected no change for perspective"); for (int i = 0; i < 4; ++i) { ASSERTF(originalQuad.fDevice.x(i) == quad.fDevice.x(i)); ASSERTF(originalQuad.fDevice.y(i) == quad.fDevice.y(i)); ASSERTF(originalQuad.fDevice.w(i) == quad.fDevice.w(i)); } return; } ASSERTF(exact, "Expected crop to be exact"); GrQuadAAFlags expectedFlags = clipAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone; ASSERTF(expectedFlags == quad.fEdgeFlags, "Expected edge flags do not match clip AA setting"); ASSERTF(quad.fDevice.quadType() == GrQuad::Type::kAxisAligned, "Unexpected quad type"); ASSERT_NEARLY_EQUAL(kDrawRect.fLeft, quad.fDevice.x(0)); ASSERT_NEARLY_EQUAL(kDrawRect.fTop, quad.fDevice.y(0)); ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(0)); ASSERT_NEARLY_EQUAL(kDrawRect.fLeft, quad.fDevice.x(1)); ASSERT_NEARLY_EQUAL(kDrawRect.fBottom, quad.fDevice.y(1)); ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(1)); ASSERT_NEARLY_EQUAL(kDrawRect.fRight, quad.fDevice.x(2)); ASSERT_NEARLY_EQUAL(kDrawRect.fTop, quad.fDevice.y(2)); ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(2)); ASSERT_NEARLY_EQUAL(kDrawRect.fRight, quad.fDevice.x(3)); ASSERT_NEARLY_EQUAL(kDrawRect.fBottom, quad.fDevice.y(3)); ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(3)); } } static void test_axis_aligned_all_clips(skiatest::Reporter* r, const SkMatrix& viewMatrix, const SkMatrix* localMatrix) { static const float kInsideEdge = SkScalarAbs(kDrawRect.fLeft) - 1.f; static const float kOutsideEdge = SkScalarAbs(kDrawRect.fBottom) + 1.f; static const float kIntersectEdge = SkScalarAbs(kDrawRect.fTop) + 1.f; static const SkRect kInsideClipRect = SkRect::MakeLTRB(-kInsideEdge, -kInsideEdge, kInsideEdge, kInsideEdge); static const SkRect kContainsClipRect = SkRect::MakeLTRB(-kOutsideEdge, -kOutsideEdge, kOutsideEdge, kOutsideEdge); static const SkRect kXYAxesClipRect = SkRect::MakeLTRB(-kIntersectEdge, -kIntersectEdge, kIntersectEdge, kIntersectEdge); static const SkRect kXAxisClipRect = SkRect::MakeLTRB(-kIntersectEdge, -kOutsideEdge, kIntersectEdge, kOutsideEdge); static const SkRect kYAxisClipRect = SkRect::MakeLTRB(-kOutsideEdge, -kIntersectEdge, kOutsideEdge, kIntersectEdge); run_crop_axis_aligned_test(r, kInsideClipRect, GrAA::kNo, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kContainsClipRect, GrAA::kNo, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kXYAxesClipRect, GrAA::kNo, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kXAxisClipRect, GrAA::kNo, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kYAxisClipRect, GrAA::kNo, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kInsideClipRect, GrAA::kYes, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kContainsClipRect, GrAA::kYes, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kXYAxesClipRect, GrAA::kYes, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kXAxisClipRect, GrAA::kYes, viewMatrix, localMatrix); run_crop_axis_aligned_test(r, kYAxisClipRect, GrAA::kYes, viewMatrix, localMatrix); } static void test_axis_aligned(skiatest::Reporter* r, const SkMatrix& viewMatrix) { test_axis_aligned_all_clips(r, viewMatrix, nullptr); SkMatrix normalized = SkMatrix::RectToRect(kDrawRect, SkRect::MakeWH(1.f, 1.f)); test_axis_aligned_all_clips(r, viewMatrix, &normalized); SkMatrix rotated; rotated.setRotate(45.f); test_axis_aligned_all_clips(r, viewMatrix, &rotated); SkMatrix perspective; perspective.setPerspY(0.001f); perspective.setSkewX(8.f / 25.f); test_axis_aligned_all_clips(r, viewMatrix, &perspective); } static void test_crop_fully_covered(skiatest::Reporter* r, const SkMatrix& viewMatrix) { run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, nullptr); run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, nullptr); SkMatrix normalized = SkMatrix::RectToRect(kDrawRect, SkRect::MakeWH(1.f, 1.f)); run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &normalized); run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &normalized); SkMatrix rotated; rotated.setRotate(45.f); run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &rotated); run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &rotated); SkMatrix perspective; perspective.setPerspY(0.001f); perspective.setSkewX(8.f / 25.f); run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &perspective); run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &perspective); } TEST(AxisAligned) { test_axis_aligned(r, SkMatrix::I()); test_axis_aligned(r, SkMatrix::Scale(-1.f, 1.f)); test_axis_aligned(r, SkMatrix::Scale(1.f, -1.f)); SkMatrix rotation; rotation.setRotate(90.f); test_axis_aligned(r, rotation); rotation.setRotate(180.f); test_axis_aligned(r, rotation); rotation.setRotate(270.f); test_axis_aligned(r, rotation); } TEST(FullyCovered) { SkMatrix rotation; rotation.setRotate(34.f); test_crop_fully_covered(r, rotation); SkMatrix skew; skew.setSkewX(0.3f); skew.setSkewY(0.04f); test_crop_fully_covered(r, skew); SkMatrix perspective; perspective.setPerspX(0.001f); perspective.setSkewY(8.f / 25.f); test_crop_fully_covered(r, perspective); }