// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c /* * Roots3And4.c * * Utility functions to find cubic and quartic roots, * coefficients are passed like this: * * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 * * The functions return the number of non-complex roots and * put the values into the s array. * * Author: Jochen Schwarze (schwarze@isa.de) * * Jan 26, 1990 Version for Graphics Gems * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic * (reported by Mark Podlipec), * Old-style function definitions, * IsZero() as a macro * Nov 23, 1990 Some systems do not declare acos() and cbrt() in * , though the functions exist in the library. * If large coefficients are used, EQN_EPS should be * reduced considerably (e.g. to 1E-30), results will be * correct but multiple roots might be reported more * than once. */ #include #include "CubicUtilities.h" #include "QuarticRoot.h" const double PI = 4 * atan(1); // unlike quadraticRoots in QuadraticUtilities.cpp, this does not discard // real roots <= 0 or >= 1 static int quadraticRootsX(const double A, const double B, const double C, double s[2]) { if (approximately_zero(A)) { if (approximately_zero(B)) { s[0] = 0; return C == 0; } s[0] = -C / B; return 1; } /* normal form: x^2 + px + q = 0 */ const double p = B / (2 * A); const double q = C / A; const double D = p * p - q; if (approximately_zero(D)) { s[0] = -p; return 1; } else if (D < 0) { return 0; } else { assert(D > 0); double sqrt_D = sqrt(D); s[0] = sqrt_D - p; s[1] = -sqrt_D - p; return 2; } } #define USE_GEMS 0 #if USE_GEMS // unlike cubicRoots in CubicUtilities.cpp, this does not discard // real roots <= 0 or >= 1 static int cubicRootsX(const double A, const double B, const double C, const double D, double s[3]) { int num; /* normal form: x^3 + Ax^2 + Bx + C = 0 */ const double invA = 1 / A; const double a = B * invA; const double b = C * invA; const double c = D * invA; /* substitute x = y - a/3 to eliminate quadric term: x^3 +px + q = 0 */ const double a2 = a * a; const double Q = (-a2 + b * 3) / 9; const double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; /* use Cardano's formula */ const double Q3 = Q * Q * Q; const double R2plusQ3 = R * R + Q3; if (approximately_zero(R2plusQ3)) { if (approximately_zero(R)) {/* one triple solution */ s[0] = 0; num = 1; } else { /* one single and one double solution */ double u = cube_root(-R); s[0] = 2 * u; s[1] = -u; num = 2; } } else if (R2plusQ3 < 0) { /* Casus irreducibilis: three real solutions */ const double theta = acos(-R / sqrt(-Q3)) / 3; const double _2RootQ = 2 * sqrt(-Q); s[0] = _2RootQ * cos(theta); s[1] = -_2RootQ * cos(theta + PI / 3); s[2] = -_2RootQ * cos(theta - PI / 3); num = 3; } else { /* one real solution */ const double sqrt_D = sqrt(R2plusQ3); const double u = cube_root(sqrt_D - R); const double v = -cube_root(sqrt_D + R); s[0] = u + v; num = 1; } /* resubstitute */ const double sub = a / 3; for (int i = 0; i < num; ++i) { s[i] -= sub; } return num; } #else static int cubicRootsX(double A, double B, double C, double D, double s[3]) { if (approximately_zero(A)) { // we're just a quadratic return quadraticRootsX(B, C, D, s); } if (approximately_zero(D)) { int num = quadraticRootsX(A, B, C, s); for (int i = 0; i < num; ++i) { if (approximately_zero(s[i])) { return num; } } s[num++] = 0; return num; } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double Q3 = Q * Q * Q; double R2MinusQ3 = R * R - Q3; double adiv3 = a / 3; double r; double* roots = s; if (R2MinusQ3 > -FLT_EPSILON / 10 && R2MinusQ3 < FLT_EPSILON / 10 ) { if (approximately_zero(R)) {/* one triple solution */ *roots++ = -adiv3; } else { /* one single and one double solution */ double u = cube_root(-R); *roots++ = 2 * u - adiv3; *roots++ = -u - adiv3; } } else if (R2MinusQ3 < 0) // we have 3 real roots { double theta = acos(R / sqrt(Q3)); double neg2RootQ = -2 * sqrt(Q); r = neg2RootQ * cos(theta / 3) - adiv3; *roots++ = r; r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; *roots++ = r; r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; *roots++ = r; } else // we have 1 real root { double A = fabs(R) + sqrt(R2MinusQ3); A = cube_root(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } r = A - adiv3; *roots++ = r; } return (int)(roots - s); } #endif int quarticRoots(const double A, const double B, const double C, const double D, const double E, double s[4]) { if (approximately_zero(A)) { if (approximately_zero(B)) { return quadraticRootsX(C, D, E, s); } return cubicRootsX(B, C, D, E, s); } int num; int i; if (approximately_zero(E)) { num = cubicRootsX(A, B, C, D, s); for (i = 0; i < num; ++i) { if (approximately_zero(s[i])) { return num; } } s[num++] = 0; return num; } double u, v; /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ const double invA = 1 / A; const double a = B * invA; const double b = C * invA; const double c = D * invA; const double d = E * invA; /* substitute x = y - a/4 to eliminate cubic term: x^4 + px^2 + qx + r = 0 */ const double a2 = a * a; const double p = -3 * a2 / 8 + b; const double q = a2 * a / 8 - a * b / 2 + c; const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; if (approximately_zero(r)) { /* no absolute term: y(y^3 + py + q) = 0 */ num = cubicRootsX(1, 0, p, q, s); s[num++] = 0; } else { /* solve the resolvent cubic ... */ (void) cubicRootsX(1, -p / 2, -r, r * p / 2 - q * q / 8, s); /* ... and take the one real solution ... */ const double z = s[0]; /* ... to build two quadric equations */ u = z * z - r; v = 2 * z - p; if (approximately_zero(u)) { u = 0; } else if (u > 0) { u = sqrt(u); } else { return 0; } if (approximately_zero(v)) { v = 0; } else if (v > 0) { v = sqrt(v); } else { return 0; } num = quadraticRootsX(1, q < 0 ? -v : v, z - u, s); num += quadraticRootsX(1, q < 0 ? v : -v, z + u, s + num); } // eliminate duplicates for (i = 0; i < num - 1; ++i) { for (int j = i + 1; j < num; ) { if (approximately_equal(s[i], s[j])) { if (j < --num) { s[j] = s[num]; } } else { ++j; } } } /* resubstitute */ const double sub = a / 4; for (i = 0; i < num; ++i) { s[i] -= sub; } return num; }