/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkBitmapDevice.h" #include "SkBitmapSource.h" #include "SkBlurImageFilter.h" #include "SkCanvas.h" #include "SkColorFilterImageFilter.h" #include "SkColorMatrixFilter.h" #include "SkComposeImageFilter.h" #include "SkDisplacementMapEffect.h" #include "SkDropShadowImageFilter.h" #include "SkFlattenableSerialization.h" #include "SkGradientShader.h" #include "SkLightingImageFilter.h" #include "SkMatrixConvolutionImageFilter.h" #include "SkMergeImageFilter.h" #include "SkMorphologyImageFilter.h" #include "SkOffsetImageFilter.h" #include "SkPerlinNoiseShader.h" #include "SkPicture.h" #include "SkPictureImageFilter.h" #include "SkPictureRecorder.h" #include "SkReadBuffer.h" #include "SkRect.h" #include "SkRectShaderImageFilter.h" #include "SkTileImageFilter.h" #include "SkXfermodeImageFilter.h" #include "Test.h" #if SK_SUPPORT_GPU #include "GrContextFactory.h" #include "SkGpuDevice.h" #endif static const int kBitmapSize = 4; namespace { class MatrixTestImageFilter : public SkImageFilter { public: MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) : SkImageFilter(0, NULL), fReporter(reporter), fExpectedMatrix(expectedMatrix) { } virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context& ctx, SkBitmap* result, SkIPoint* offset) const override { REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix); return true; } SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(MatrixTestImageFilter) protected: void flatten(SkWriteBuffer& buffer) const override { this->INHERITED::flatten(buffer); buffer.writeFunctionPtr(fReporter); buffer.writeMatrix(fExpectedMatrix); } private: skiatest::Reporter* fReporter; SkMatrix fExpectedMatrix; typedef SkImageFilter INHERITED; }; } SkFlattenable* MatrixTestImageFilter::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); skiatest::Reporter* reporter = (skiatest::Reporter*)buffer.readFunctionPtr(); SkMatrix matrix; buffer.readMatrix(&matrix); return SkNEW_ARGS(MatrixTestImageFilter, (reporter, matrix)); } #ifndef SK_IGNORE_TO_STRING void MatrixTestImageFilter::toString(SkString* str) const { str->appendf("MatrixTestImageFilter: ("); str->append(")"); } #endif static void make_small_bitmap(SkBitmap& bitmap) { bitmap.allocN32Pixels(kBitmapSize, kBitmapSize); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int i = kBitmapSize / 4; for (int y = 0; y < kBitmapSize; y += i) { for (int x = 0; x < kBitmapSize; x += i) { canvas.save(); canvas.translate(SkIntToScalar(x), SkIntToScalar(y)); canvas.drawRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i), 0, SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas.drawRect(SkRect::MakeXYWH(0, SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas.restore(); } } } static SkImageFilter* make_scale(float amount, SkImageFilter* input = NULL) { SkScalar s = amount; SkScalar matrix[20] = { s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0 }; SkAutoTUnref filter(SkColorMatrixFilter::Create(matrix)); return SkColorFilterImageFilter::Create(filter, input); } static SkImageFilter* make_grayscale(SkImageFilter* input, const SkImageFilter::CropRect* cropRect) { SkScalar matrix[20]; memset(matrix, 0, 20 * sizeof(SkScalar)); matrix[0] = matrix[5] = matrix[10] = 0.2126f; matrix[1] = matrix[6] = matrix[11] = 0.7152f; matrix[2] = matrix[7] = matrix[12] = 0.0722f; matrix[18] = 1.0f; SkAutoTUnref filter(SkColorMatrixFilter::Create(matrix)); return SkColorFilterImageFilter::Create(filter, input, cropRect); } static SkImageFilter* make_blue(SkImageFilter* input, const SkImageFilter::CropRect* cropRect) { SkAutoTUnref filter(SkColorFilter::CreateModeFilter(SK_ColorBLUE, SkXfermode::kSrcIn_Mode)); return SkColorFilterImageFilter::Create(filter, input, cropRect); } DEF_TEST(ImageFilter, reporter) { { // Check that two non-clipping color-matrice-filters concatenate into a single filter. SkAutoTUnref halfBrightness(make_scale(0.5f)); SkAutoTUnref quarterBrightness(make_scale(0.5f, halfBrightness)); REPORTER_ASSERT(reporter, NULL == quarterBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, quarterBrightness->asColorFilter(&cf)); REPORTER_ASSERT(reporter, cf->asColorMatrix(NULL)); cf->unref(); } { // Check that a clipping color-matrice-filter followed by a color-matrice-filters // concatenates into a single filter, but not a matrixfilter (due to clamping). SkAutoTUnref doubleBrightness(make_scale(2.0f)); SkAutoTUnref halfBrightness(make_scale(0.5f, doubleBrightness)); REPORTER_ASSERT(reporter, NULL == halfBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf)); REPORTER_ASSERT(reporter, !cf->asColorMatrix(NULL)); cf->unref(); } { // Check that a color filter image filter without a crop rect can be // expressed as a color filter. SkAutoTUnref gray(make_grayscale(NULL, NULL)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(NULL)); } { // Check that a colorfilterimage filter without a crop rect but with an input // that is another colorfilterimage can be expressed as a colorfilter (composed). SkAutoTUnref mode(make_blue(NULL, NULL)); SkAutoTUnref gray(make_grayscale(mode, NULL)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(NULL)); } { // Test that if we exceed the limit of what ComposeColorFilter can combine, we still // can build the DAG and won't assert if we call asColorFilter. SkAutoTUnref filter(make_blue(NULL, NULL)); const int kWayTooManyForComposeColorFilter = 100; for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) { filter.reset(make_blue(filter, NULL)); // the first few of these will succeed, but after we hit the internal limit, // it will then return false. (void)filter->asColorFilter(NULL); } } { // Check that a color filter image filter with a crop rect cannot // be expressed as a color filter. SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(0, 0, 100, 100)); SkAutoTUnref grayWithCrop(make_grayscale(NULL, &cropRect)); REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(NULL)); } { // Check that two non-commutative matrices are concatenated in // the correct order. SkScalar blueToRedMatrix[20] = { 0 }; blueToRedMatrix[2] = blueToRedMatrix[18] = SK_Scalar1; SkScalar redToGreenMatrix[20] = { 0 }; redToGreenMatrix[5] = redToGreenMatrix[18] = SK_Scalar1; SkAutoTUnref blueToRed(SkColorMatrixFilter::Create(blueToRedMatrix)); SkAutoTUnref filter1(SkColorFilterImageFilter::Create(blueToRed.get())); SkAutoTUnref redToGreen(SkColorMatrixFilter::Create(redToGreenMatrix)); SkAutoTUnref filter2(SkColorFilterImageFilter::Create(redToGreen.get(), filter1.get())); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setImageFilter(filter2.get()); SkCanvas canvas(result); canvas.clear(0x0); SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize)); canvas.drawRect(rect, paint); uint32_t pixel = *result.getAddr32(0, 0); // The result here should be green, since we have effectively shifted blue to green. REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } { // Tests pass by not asserting SkBitmap bitmap, result; make_small_bitmap(bitmap); result.allocN32Pixels(kBitmapSize, kBitmapSize); { // This tests for : // 1 ) location at (0,0,1) SkPoint3 location(0, 0, SK_Scalar1); // 2 ) location and target at same value SkPoint3 target(location.fX, location.fY, location.fZ); // 3 ) large negative specular exponent value SkScalar specularExponent = -1000; SkAutoTUnref bmSrc(SkBitmapSource::Create(bitmap)); SkPaint paint; paint.setImageFilter(SkLightingImageFilter::CreateSpotLitSpecular( location, target, specularExponent, 180, 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, bmSrc))->unref(); SkCanvas canvas(result); SkRect r = SkRect::MakeWH(SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize)); canvas.drawRect(r, paint); } } } static void test_crop_rects(SkImageFilter::Proxy* proxy, skiatest::Reporter* reporter) { // Check that all filters offset to their absolute crop rect, // unaffected by the input crop rect. // Tests pass by not asserting. SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); SkImageFilter::CropRect inputCropRect(SkRect::MakeXYWH(8, 13, 80, 80)); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(20, 30, 60, 60)); SkAutoTUnref input(make_grayscale(NULL, &inputCropRect)); SkAutoTUnref cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode)); SkPoint3 location(0, 0, SK_Scalar1); SkPoint3 target(SK_Scalar1, SK_Scalar1, SK_Scalar1); SkScalar kernel[9] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(3, 3); SkScalar gain = SK_Scalar1, bias = 0; SkImageFilter* filters[] = { SkColorFilterImageFilter::Create(cf.get(), input.get(), &cropRect), SkDisplacementMapEffect::Create(SkDisplacementMapEffect::kR_ChannelSelectorType, SkDisplacementMapEffect::kB_ChannelSelectorType, 40.0f, input.get(), input.get(), &cropRect), SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkDropShadowImageFilter::Create(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode, input.get(), &cropRect), SkLightingImageFilter::CreatePointLitDiffuse(location, SK_ColorGREEN, 0, 0, input.get(), &cropRect), SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input.get(), &cropRect), SkMatrixConvolutionImageFilter::Create(kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, input.get(), &cropRect), SkMergeImageFilter::Create(input.get(), input.get(), SkXfermode::kSrcOver_Mode, &cropRect), SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkDilateImageFilter::Create(3, 2, input.get(), &cropRect), SkErodeImageFilter::Create(2, 3, input.get(), &cropRect), SkTileImageFilter::Create(inputCropRect.rect(), cropRect.rect(), input.get()), SkXfermodeImageFilter::Create(SkXfermode::Create(SkXfermode::kSrcOver_Mode), input.get(), input.get(), &cropRect), }; for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { SkImageFilter* filter = filters[i]; SkBitmap result; SkIPoint offset; SkString str; str.printf("filter %d", static_cast(i)); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), NULL); REPORTER_ASSERT_MESSAGE(reporter, filter->filterImage(proxy, bitmap, ctx, &result, &offset), str.c_str()); REPORTER_ASSERT_MESSAGE(reporter, offset.fX == 20 && offset.fY == 30, str.c_str()); } for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { SkSafeUnref(filters[i]); } } static SkBitmap make_gradient_circle(int width, int height) { SkBitmap bitmap; SkScalar x = SkIntToScalar(width / 2); SkScalar y = SkIntToScalar(height / 2); SkScalar radius = SkMinScalar(x, y) * 0.8f; bitmap.allocN32Pixels(width, height); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkColor colors[2]; colors[0] = SK_ColorWHITE; colors[1] = SK_ColorBLACK; SkAutoTUnref shader( SkGradientShader::CreateRadial(SkPoint::Make(x, y), radius, colors, NULL, 2, SkShader::kClamp_TileMode) ); SkPaint paint; paint.setShader(shader); canvas.drawCircle(x, y, radius, paint); return bitmap; } static void test_negative_blur_sigma(SkImageFilter::Proxy* proxy, skiatest::Reporter* reporter) { // Check that SkBlurImageFilter will accept a negative sigma, either in // the given arguments or after CTM application. int width = 32, height = 32; SkScalar five = SkIntToScalar(5); SkAutoTUnref positiveFilter( SkBlurImageFilter::Create(five, five) ); SkAutoTUnref negativeFilter( SkBlurImageFilter::Create(-five, five) ); SkBitmap gradient = make_gradient_circle(width, height); SkBitmap positiveResult1, negativeResult1; SkBitmap positiveResult2, negativeResult2; SkIPoint offset; SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), NULL); positiveFilter->filterImage(proxy, gradient, ctx, &positiveResult1, &offset); negativeFilter->filterImage(proxy, gradient, ctx, &negativeResult1, &offset); SkMatrix negativeScale; negativeScale.setScale(-SK_Scalar1, SK_Scalar1); SkImageFilter::Context negativeCTX(negativeScale, SkIRect::MakeLargest(), NULL); positiveFilter->filterImage(proxy, gradient, negativeCTX, &negativeResult2, &offset); negativeFilter->filterImage(proxy, gradient, negativeCTX, &positiveResult2, &offset); SkAutoLockPixels lockP1(positiveResult1); SkAutoLockPixels lockP2(positiveResult2); SkAutoLockPixels lockN1(negativeResult1); SkAutoLockPixels lockN2(negativeResult2); for (int y = 0; y < height; y++) { int diffs = memcmp(positiveResult1.getAddr32(0, y), negativeResult1.getAddr32(0, y), positiveResult1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResult1.getAddr32(0, y), negativeResult2.getAddr32(0, y), positiveResult1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResult1.getAddr32(0, y), positiveResult2.getAddr32(0, y), positiveResult1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(TestNegativeBlurSigma, reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(100, 100); const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkBitmapDevice::Create(info, props)); SkImageFilter::Proxy proxy(device); test_negative_blur_sigma(&proxy, reporter); } DEF_TEST(ImageFilterDrawTiled, reporter) { // Check that all filters when drawn tiled (with subsequent clip rects) exactly // match the same filters drawn with a single full-canvas bitmap draw. // Tests pass by not asserting. SkAutoTUnref cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode)); SkPoint3 location(0, 0, SK_Scalar1); SkPoint3 target(SK_Scalar1, SK_Scalar1, SK_Scalar1); SkScalar kernel[9] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(3, 3); SkScalar gain = SK_Scalar1, bias = 0; SkScalar five = SkIntToScalar(5); SkAutoTUnref gradient_source(SkBitmapSource::Create(make_gradient_circle(64, 64))); SkAutoTUnref blur(SkBlurImageFilter::Create(five, five)); SkMatrix matrix; matrix.setTranslate(SK_Scalar1, SK_Scalar1); matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1); SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(64, 64, &factory, 0); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); SkAutoTUnref picture(recorder.endRecording()); SkAutoTUnref pictureFilter(SkPictureImageFilter::Create(picture.get())); SkAutoTUnref shader(SkPerlinNoiseShader::CreateTurbulence(SK_Scalar1, SK_Scalar1, 1, 0)); SkAutoTUnref rectShaderFilter(SkRectShaderImageFilter::Create(shader.get())); SkAutoTUnref greenColorShader(SkShader::CreateColorShader(SK_ColorGREEN)); SkImageFilter::CropRect leftSideCropRect(SkRect::MakeXYWH(0, 0, 32, 64)); SkAutoTUnref rectShaderFilterLeft(SkRectShaderImageFilter::Create(greenColorShader.get(), &leftSideCropRect)); SkImageFilter::CropRect rightSideCropRect(SkRect::MakeXYWH(32, 0, 32, 64)); SkAutoTUnref rectShaderFilterRight(SkRectShaderImageFilter::Create(greenColorShader.get(), &rightSideCropRect)); struct { const char* fName; SkImageFilter* fFilter; } filters[] = { { "color filter", SkColorFilterImageFilter::Create(cf.get()) }, { "displacement map", SkDisplacementMapEffect::Create( SkDisplacementMapEffect::kR_ChannelSelectorType, SkDisplacementMapEffect::kB_ChannelSelectorType, 20.0f, gradient_source.get()) }, { "blur", SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1) }, { "drop shadow", SkDropShadowImageFilter::Create( SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode) }, { "diffuse lighting", SkLightingImageFilter::CreatePointLitDiffuse( location, SK_ColorGREEN, 0, 0) }, { "specular lighting", SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0) }, { "matrix convolution", SkMatrixConvolutionImageFilter::Create( kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false) }, { "merge", SkMergeImageFilter::Create(NULL, NULL, SkXfermode::kSrcOver_Mode) }, { "merge with disjoint inputs", SkMergeImageFilter::Create( rectShaderFilterLeft, rectShaderFilterRight, SkXfermode::kSrcOver_Mode) }, { "offset", SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1) }, { "dilate", SkDilateImageFilter::Create(3, 2) }, { "erode", SkErodeImageFilter::Create(2, 3) }, { "tile", SkTileImageFilter::Create(SkRect::MakeXYWH(0, 0, 50, 50), SkRect::MakeXYWH(0, 0, 100, 100), NULL) }, { "matrix", SkImageFilter::CreateMatrixFilter(matrix, kLow_SkFilterQuality) }, { "blur and offset", SkOffsetImageFilter::Create(five, five, blur.get()) }, { "picture and blur", SkBlurImageFilter::Create(five, five, pictureFilter.get()) }, { "rect shader and blur", SkBlurImageFilter::Create(five, five, rectShaderFilter.get()) }, }; SkBitmap untiledResult, tiledResult; int width = 64, height = 64; untiledResult.allocN32Pixels(width, height); tiledResult.allocN32Pixels(width, height); SkCanvas tiledCanvas(tiledResult); SkCanvas untiledCanvas(untiledResult); int tileSize = 8; for (int scale = 1; scale <= 2; ++scale) { for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { tiledCanvas.clear(0); untiledCanvas.clear(0); SkPaint paint; paint.setImageFilter(filters[i].fFilter); paint.setTextSize(SkIntToScalar(height)); paint.setColor(SK_ColorWHITE); SkString str; const char* text = "ABC"; SkScalar ypos = SkIntToScalar(height); untiledCanvas.save(); untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); untiledCanvas.drawText(text, strlen(text), 0, ypos, paint); untiledCanvas.restore(); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { tiledCanvas.save(); tiledCanvas.clipRect(SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize))); tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawText(text, strlen(text), 0, ypos, paint); tiledCanvas.restore(); } } untiledCanvas.flush(); tiledCanvas.flush(); for (int y = 0; y < height; y++) { int diffs = memcmp(untiledResult.getAddr32(0, y), tiledResult.getAddr32(0, y), untiledResult.rowBytes()); REPORTER_ASSERT_MESSAGE(reporter, !diffs, filters[i].fName); if (diffs) { break; } } } } for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { SkSafeUnref(filters[i].fFilter); } } static void draw_saveLayer_picture(int width, int height, int tileSize, SkBBHFactory* factory, SkBitmap* result) { SkMatrix matrix; matrix.setTranslate(SkIntToScalar(50), 0); SkAutoTUnref cf(SkColorFilter::CreateModeFilter(SK_ColorWHITE, SkXfermode::kSrc_Mode)); SkAutoTUnref cfif(SkColorFilterImageFilter::Create(cf.get())); SkAutoTUnref imageFilter(SkImageFilter::CreateMatrixFilter(matrix, kNone_SkFilterQuality, cfif.get())); SkPaint paint; paint.setImageFilter(imageFilter.get()); SkPictureRecorder recorder; SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50)); SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width), SkIntToScalar(height), factory, 0); recordingCanvas->translate(-55, 0); recordingCanvas->saveLayer(&bounds, &paint); recordingCanvas->restore(); SkAutoTUnref picture1(recorder.endRecording()); result->allocN32Pixels(width, height); SkCanvas canvas(*result); canvas.clear(0); canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize))); canvas.drawPicture(picture1.get()); } DEF_TEST(ImageFilterDrawMatrixBBH, reporter) { // Check that matrix filter when drawn tiled with BBH exactly // matches the same thing drawn without BBH. // Tests pass by not asserting. const int width = 200, height = 200; const int tileSize = 100; SkBitmap result1, result2; SkRTreeFactory factory; draw_saveLayer_picture(width, height, tileSize, &factory, &result1); draw_saveLayer_picture(width, height, tileSize, NULL, &result2); for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } static SkImageFilter* makeBlur(SkImageFilter* input = NULL) { return SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input); } static SkImageFilter* makeDropShadow(SkImageFilter* input = NULL) { return SkDropShadowImageFilter::Create( SkIntToScalar(100), SkIntToScalar(100), SkIntToScalar(10), SkIntToScalar(10), SK_ColorBLUE, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode, input, NULL); } DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) { SkAutoTUnref filter1(makeBlur()); SkAutoTUnref filter2(makeDropShadow(filter1.get())); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); filter2->filterBounds(bounds, SkMatrix::I(), &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) { SkAutoTUnref filter1(makeDropShadow()); SkAutoTUnref filter2(makeBlur(filter1.get())); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); filter2->filterBounds(bounds, SkMatrix::I(), &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) { SkAutoTUnref filter1(SkDilateImageFilter::Create(2, 2)); SkAutoTUnref filter2(makeDropShadow(filter1.get())); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234); filter2->filterBounds(bounds, SkMatrix::I(), &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) { SkAutoTUnref filter1(makeBlur()); SkAutoTUnref filter2(makeBlur()); SkAutoTUnref composedFilter(SkComposeImageFilter::Create(filter1.get(), filter2.get())); SkRect boundsSrc = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); SkRect expectedBounds = SkRect::MakeXYWH( SkIntToScalar(-6), SkIntToScalar(-6), SkIntToScalar(112), SkIntToScalar(112)); SkRect boundsDst = SkRect::MakeEmpty(); composedFilter->computeFastBounds(boundsSrc, &boundsDst); REPORTER_ASSERT(reporter, boundsDst == expectedBounds); } static void draw_blurred_rect(SkCanvas* canvas) { SkAutoTUnref filter(SkBlurImageFilter::Create(SkIntToScalar(8), 0)); SkPaint filterPaint; filterPaint.setColor(SK_ColorWHITE); filterPaint.setImageFilter(filter); canvas->saveLayer(NULL, &filterPaint); SkPaint whitePaint; whitePaint.setColor(SK_ColorWHITE); canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint); canvas->restore(); } static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) { canvas->save(); canvas->clipRect(clipRect); canvas->drawPicture(picture); canvas->restore(); } DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) { // Check that the blur filter when recorded with RTree acceleration, // and drawn tiled (with subsequent clip rects) exactly // matches the same filter drawn with without RTree acceleration. // This tests that the "bleed" from the blur into the otherwise-blank // tiles is correctly rendered. // Tests pass by not asserting. int width = 16, height = 8; SkBitmap result1, result2; result1.allocN32Pixels(width, height); result2.allocN32Pixels(width, height); SkCanvas canvas1(result1); SkCanvas canvas2(result2); int tileSize = 8; canvas1.clear(0); canvas2.clear(0); SkRTreeFactory factory; SkPictureRecorder recorder1, recorder2; // The only difference between these two pictures is that one has RTree aceleration. SkCanvas* recordingCanvas1 = recorder1.beginRecording(SkIntToScalar(width), SkIntToScalar(height), NULL, 0); SkCanvas* recordingCanvas2 = recorder2.beginRecording(SkIntToScalar(width), SkIntToScalar(height), &factory, 0); draw_blurred_rect(recordingCanvas1); draw_blurred_rect(recordingCanvas2); SkAutoTUnref picture1(recorder1.endRecording()); SkAutoTUnref picture2(recorder2.endRecording()); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)); draw_picture_clipped(&canvas1, tileRect, picture1); draw_picture_clipped(&canvas2, tileRect, picture2); } } for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterMatrixConvolution, reporter) { // Check that a 1x3 filter does not cause a spurious assert. SkScalar kernel[3] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(1, 3); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); SkAutoTUnref filter( SkMatrixConvolutionImageFilter::Create( kernelSize, kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false)); SkBitmap result; int width = 16, height = 16; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint paint; paint.setImageFilter(filter); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); canvas.drawRect(rect, paint); } DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) { // Check that a filter with borders outside the target bounds // does not crash. SkScalar kernel[3] = { 0, 0, 0, }; SkISize kernelSize = SkISize::Make(3, 1); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(2, 0); SkAutoTUnref filter( SkMatrixConvolutionImageFilter::Create( kernelSize, kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kClamp_TileMode, true)); SkBitmap result; int width = 10, height = 10; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint filterPaint; filterPaint.setImageFilter(filter); SkRect bounds = SkRect::MakeWH(1, 10); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); SkPaint rectPaint; canvas.saveLayer(&bounds, &filterPaint); canvas.drawRect(rect, rectPaint); canvas.restore(); } DEF_TEST(ImageFilterCropRect, reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(100, 100); const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkBitmapDevice::Create(info, props)); SkImageFilter::Proxy proxy(device); test_crop_rects(&proxy, reporter); } DEF_TEST(ImageFilterMatrix, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); SkMatrix expectedMatrix = canvas.getTotalMatrix(); SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0); SkPaint paint; SkAutoTUnref imageFilter( new MatrixTestImageFilter(reporter, expectedMatrix)); paint.setImageFilter(imageFilter.get()); recordingCanvas->saveLayer(NULL, &paint); SkPaint solidPaint; solidPaint.setColor(0xFFFFFFFF); recordingCanvas->save(); recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); recordingCanvas->restore(); // scale recordingCanvas->restore(); // saveLayer SkAutoTUnref picture(recorder.endRecording()); canvas.drawPicture(picture); } DEF_TEST(ImageFilterCrossProcessPictureImageFilter, reporter) { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); SkAutoTUnref picture(recorder.endRecording()); // Wrap that SkPicture in an SkPictureImageFilter. SkAutoTUnref imageFilter( SkPictureImageFilter::Create(picture.get())); // Check that SkPictureImageFilter successfully serializes its contained // SkPicture when not in cross-process mode. SkPaint paint; paint.setImageFilter(imageFilter.get()); SkPictureRecorder outerRecorder; SkCanvas* outerCanvas = outerRecorder.beginRecording(1, 1, &factory, 0); SkPaint redPaintWithFilter; redPaintWithFilter.setColor(SK_ColorRED); redPaintWithFilter.setImageFilter(imageFilter.get()); outerCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter); SkAutoTUnref outerPicture(outerRecorder.endRecording()); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); SkCanvas canvas(bitmap); // The result here should be green, since the filter replaces the primitive's red interior. canvas.clear(0x0); canvas.drawPicture(outerPicture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Check that, for now, SkPictureImageFilter does not serialize or // deserialize its contained picture when the filter is serialized // cross-process. Do this by "laundering" it through SkValidatingReadBuffer. SkAutoTUnref data(SkValidatingSerializeFlattenable(imageFilter.get())); SkAutoTUnref flattenable(SkValidatingDeserializeFlattenable( data->data(), data->size(), SkImageFilter::GetFlattenableType())); SkImageFilter* unflattenedFilter = static_cast(flattenable.get()); redPaintWithFilter.setImageFilter(unflattenedFilter); SkPictureRecorder crossProcessRecorder; SkCanvas* crossProcessCanvas = crossProcessRecorder.beginRecording(1, 1, &factory, 0); crossProcessCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter); SkAutoTUnref crossProcessPicture(crossProcessRecorder.endRecording()); canvas.clear(0x0); canvas.drawPicture(crossProcessPicture); pixel = *bitmap.getAddr32(0, 0); // If the security precautions are enabled, the result here should not be green, since the // filter draws nothing. REPORTER_ASSERT(reporter, SkPicture::PictureIOSecurityPrecautionsEnabled() ? pixel != SK_ColorGREEN : pixel == SK_ColorGREEN); } DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); SkAutoTUnref picture(recorder.endRecording()); SkAutoTUnref imageFilter(SkPictureImageFilter::Create(picture.get())); SkBitmap result; SkIPoint offset; SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(1, 1, 1, 1), NULL); SkBitmap bitmap; bitmap.allocN32Pixels(2, 2); const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkBitmapDevice device(bitmap, props); SkImageFilter::Proxy proxy(&device); REPORTER_ASSERT(reporter, !imageFilter->filterImage(&proxy, bitmap, ctx, &result, &offset)); } DEF_TEST(ImageFilterEmptySaveLayer, reporter) { // Even when there's an empty saveLayer()/restore(), ensure that an image // filter or color filter which affects transparent black still draws. SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); SkCanvas canvas(bitmap); SkRTreeFactory factory; SkPictureRecorder recorder; SkAutoTUnref green( SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrc_Mode)); SkAutoTUnref imageFilter( SkColorFilterImageFilter::Create(green.get())); SkPaint imageFilterPaint; imageFilterPaint.setImageFilter(imageFilter.get()); SkPaint colorFilterPaint; colorFilterPaint.setColorFilter(green.get()); SkRect bounds = SkRect::MakeWH(10, 10); SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &imageFilterPaint); recordingCanvas->restore(); SkAutoTUnref picture(recorder.endRecording()); canvas.clear(0); canvas.drawPicture(picture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(NULL, &imageFilterPaint); recordingCanvas->restore(); SkAutoTUnref picture2(recorder.endRecording()); canvas.clear(0); canvas.drawPicture(picture2); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &colorFilterPaint); recordingCanvas->restore(); SkAutoTUnref picture3(recorder.endRecording()); canvas.clear(0); canvas.drawPicture(picture3); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); // Check that a blur with an insane radius does not crash or assert. SkAutoTUnref blur(SkBlurImageFilter::Create(SkIntToScalar(1<<30), SkIntToScalar(1<<30))); SkPaint paint; paint.setImageFilter(blur); canvas->drawSprite(bitmap, 0, 0, &paint); } DEF_TEST(HugeBlurImageFilter, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_huge_blur(&canvas, reporter); } DEF_TEST(MatrixConvolutionSanityTest, reporter) { SkScalar kernel[1] = { 0 }; SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(1, 1); // Check that an enormous (non-allocatable) kernel gives a NULL filter. SkAutoTUnref conv(SkMatrixConvolutionImageFilter::Create( SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false)); REPORTER_ASSERT(reporter, NULL == conv.get()); // Check that a NULL kernel gives a NULL filter. conv.reset(SkMatrixConvolutionImageFilter::Create( SkISize::Make(1, 1), NULL, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false)); REPORTER_ASSERT(reporter, NULL == conv.get()); // Check that a kernel width < 1 gives a NULL filter. conv.reset(SkMatrixConvolutionImageFilter::Create( SkISize::Make(0, 1), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false)); REPORTER_ASSERT(reporter, NULL == conv.get()); // Check that kernel height < 1 gives a NULL filter. conv.reset(SkMatrixConvolutionImageFilter::Create( SkISize::Make(1, -1), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false)); REPORTER_ASSERT(reporter, NULL == conv.get()); } static void test_xfermode_cropped_input(SkCanvas* canvas, skiatest::Reporter* reporter) { canvas->clear(0); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); bitmap.eraseARGB(255, 255, 255, 255); SkAutoTUnref green( SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrcIn_Mode)); SkAutoTUnref greenFilter( SkColorFilterImageFilter::Create(green.get())); SkImageFilter::CropRect cropRect(SkRect::MakeEmpty()); SkAutoTUnref croppedOut( SkColorFilterImageFilter::Create(green.get(), NULL, &cropRect)); // Check that an xfermode image filter whose input has been cropped out still draws the other // input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning. SkXfermode* mode = SkXfermode::Create(SkXfermode::kSrcOver_Mode); SkAutoTUnref xfermodeNoFg( SkXfermodeImageFilter::Create(mode, greenFilter, croppedOut)); SkAutoTUnref xfermodeNoBg( SkXfermodeImageFilter::Create(mode, croppedOut, greenFilter)); SkAutoTUnref xfermodeNoFgNoBg( SkXfermodeImageFilter::Create(mode, croppedOut, croppedOut)); SkPaint paint; paint.setImageFilter(xfermodeNoFg); canvas->drawSprite(bitmap, 0, 0, &paint); uint32_t pixel; SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(xfermodeNoBg); canvas->drawSprite(bitmap, 0, 0, &paint); canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(xfermodeNoFgNoBg); canvas->drawSprite(bitmap, 0, 0, &paint); canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(ImageFilterNestedSaveLayer, reporter) { SkBitmap temp; temp.allocN32Pixels(50, 50); SkCanvas canvas(temp); canvas.clear(0x0); SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); bitmap.eraseColor(SK_ColorGREEN); SkMatrix matrix; matrix.setScale(SkIntToScalar(2), SkIntToScalar(2)); matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20)); SkAutoTUnref matrixFilter( SkImageFilter::CreateMatrixFilter(matrix, kLow_SkFilterQuality)); // Test that saveLayer() with a filter nested inside another saveLayer() applies the // correct offset to the filter matrix. SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30); canvas.saveLayer(&bounds1, NULL); SkPaint filterPaint; filterPaint.setImageFilter(matrixFilter); SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10); canvas.saveLayer(&bounds2, &filterPaint); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); canvas.drawRect(bounds2, greenPaint); canvas.restore(); canvas.restore(); SkPaint strokePaint; strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setColor(SK_ColorRED); SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); uint32_t pixel; canvas.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Test that drawSprite() with a filter nested inside a saveLayer() applies the // correct offset to the filter matrix. canvas.clear(0x0); canvas.readPixels(info, &pixel, 4, 25, 25); canvas.saveLayer(&bounds1, NULL); canvas.drawSprite(bitmap, 20, 20, &filterPaint); canvas.restore(); canvas.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(XfermodeImageFilterCroppedInput, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_xfermode_cropped_input(&canvas, reporter); } DEF_TEST(ComposedImageFilterOffset, reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkBitmapDevice device(bitmap, props); SkImageFilter::Proxy proxy(&device); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(1, 0, 20, 20)); SkAutoTUnref offsetFilter(SkOffsetImageFilter::Create(0, 0, NULL, &cropRect)); SkAutoTUnref blurFilter(makeBlur()); SkAutoTUnref composedFilter(SkComposeImageFilter::Create(blurFilter, offsetFilter.get())); SkBitmap result; SkIPoint offset; SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), NULL); REPORTER_ASSERT(reporter, composedFilter->filterImage(&proxy, bitmap, ctx, &result, &offset)); REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0); } #if SK_SUPPORT_GPU DEF_GPUTEST(ImageFilterCropRectGPU, reporter, factory) { GrContext* context = factory->get(static_cast(0)); if (NULL == context) { return; } const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkGpuDevice::Create(context, SkSurface::kNo_Budgeted, SkImageInfo::MakeN32Premul(100, 100), 0, &props)); SkImageFilter::Proxy proxy(device); test_crop_rects(&proxy, reporter); } DEF_GPUTEST(HugeBlurImageFilterGPU, reporter, factory) { GrContext* context = factory->get(static_cast(0)); if (NULL == context) { return; } const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkGpuDevice::Create(context, SkSurface::kNo_Budgeted, SkImageInfo::MakeN32Premul(100, 100), 0, &props)); SkCanvas canvas(device); test_huge_blur(&canvas, reporter); } DEF_GPUTEST(XfermodeImageFilterCroppedInputGPU, reporter, factory) { GrContext* context = factory->get(static_cast(0)); if (NULL == context) { return; } const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkGpuDevice::Create(context, SkSurface::kNo_Budgeted, SkImageInfo::MakeN32Premul(1, 1), 0, &props)); SkCanvas canvas(device); test_xfermode_cropped_input(&canvas, reporter); } DEF_GPUTEST(TestNegativeBlurSigmaGPU, reporter, factory) { GrContext* context = factory->get(static_cast(0)); if (NULL == context) { return; } const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref device(SkGpuDevice::Create(context, SkSurface::kNo_Budgeted, SkImageInfo::MakeN32Premul(1, 1), 0, &props)); SkImageFilter::Proxy proxy(device); test_negative_blur_sigma(&proxy, reporter); } #endif