/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tests/Test.h" #include #include #include #include "include/core/SkBitmap.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGeometryProcessor.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrMemoryPool.h" #include "src/gpu/GrOpFlushState.h" #include "src/gpu/GrOpsRenderPass.h" #include "src/gpu/GrProgramInfo.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/KeyBuilder.h" #include "src/gpu/ResourceKey.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLVarying.h" #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" #include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h" #include "src/gpu/v1/SurfaceDrawContext_v1.h" #if 0 #include "tools/ToolUtils.h" #define WRITE_PNG_CONTEXT_TYPE kANGLE_D3D11_ES3_ContextType #endif SKGPU_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); static constexpr int kBoxSize = 2; static constexpr int kBoxCountY = 8; static constexpr int kBoxCountX = 8; static constexpr int kBoxCount = kBoxCountY * kBoxCountX; static constexpr int kImageWidth = kBoxCountY * kBoxSize; static constexpr int kImageHeight = kBoxCountX * kBoxSize; static constexpr int kIndexPatternRepeatCount = 3; constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3}; class DrawMeshHelper { public: DrawMeshHelper(GrOpFlushState* state) : fState(state) {} sk_sp getIndexBuffer(); sk_sp makeIndexBuffer(const uint16_t[], int count); template sk_sp makeVertexBuffer(const SkTArray& data) { return this->makeVertexBuffer(data.begin(), data.count()); } template sk_sp makeVertexBuffer(const std::vector& data) { return this->makeVertexBuffer(data.data(), data.size()); } template sk_sp makeVertexBuffer(const T* data, int count); GrMeshDrawTarget* target() { return fState; } sk_sp fIndexBuffer; sk_sp fIndexBuffer2; sk_sp fInstBuffer; sk_sp fVertBuffer; sk_sp fVertBuffer2; sk_sp fDrawIndirectBuffer; size_t fDrawIndirectBufferOffset; GrOpsRenderPass* bindPipeline(GrPrimitiveType, bool isInstanced, bool hasVertexBuffer); private: GrOpFlushState* fState; }; struct Box { float fX, fY; GrColor fColor; }; //////////////////////////////////////////////////////////////////////////////////////////////////// /** * This is a GPU-backend specific test. It tries to test all possible usecases of * GrOpsRenderPass::draw*. The test works by drawing checkerboards of colored boxes, reading back * the pixels, and comparing with expected results. The boxes are drawn on integer boundaries and * the (opaque) colors are chosen from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to * produce exact matches. */ static void run_test(GrDirectContext*, const char* testName, skiatest::Reporter*, const std::unique_ptr&, const SkBitmap& gold, std::function prepareFn, std::function executeFn); #ifdef WRITE_PNG_CONTEXT_TYPE static bool IsContextTypeForOutputPNGs(skiatest::GrContextFactoryContextType type) { return type == skiatest::GrContextFactoryContextType::WRITE_PNG_CONTEXT_TYPE; } DEF_GPUTEST_FOR_CONTEXTS(GrMeshTest, IsContextTypeForOutputPNGs, reporter, ctxInfo, nullptr) { #else DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) { #endif auto dContext = ctxInfo.directContext(); auto sdc = skgpu::v1::SurfaceDrawContext::Make( dContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {kImageWidth, kImageHeight}, SkSurfaceProps()); if (!sdc) { ERRORF(reporter, "could not create render target context."); return; } SkTArray boxes; SkTArray> vertexData; SkBitmap gold; // ---- setup ---------- SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); gold.allocN32Pixels(kImageWidth, kImageHeight); SkCanvas goldCanvas(gold); for (int y = 0; y < kBoxCountY; ++y) { for (int x = 0; x < kBoxCountX; ++x) { int c = y + x; int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff}; const Box box = boxes.push_back() = { float(x * kBoxSize), float(y * kBoxSize), GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255) }; std::array& boxVertices = vertexData.push_back(); for (int i = 0; i < 4; ++i) { boxVertices[i] = { box.fX + (i / 2) * kBoxSize, box.fY + (i % 2) * kBoxSize, box.fColor }; } paint.setARGB(255, rgb[0], rgb[1], rgb[2]); goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint); } } // ---- tests ---------- #define VALIDATE(buff) \ do { \ if (!buff) { \ ERRORF(reporter, #buff " is null."); \ return; \ } \ } while (0) run_test(dContext, "draw", reporter, sdc, gold, [&](DrawMeshHelper* helper) { SkTArray expandedVertexData; for (int i = 0; i < kBoxCount; ++i) { for (int j = 0; j < 6; ++j) { expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]); } } // Draw boxes one line at a time to exercise base vertex. helper->fVertBuffer = helper->makeVertexBuffer(expandedVertexData); VALIDATE(helper->fVertBuffer); }, [&](DrawMeshHelper* helper) { for (int y = 0; y < kBoxCountY; ++y) { auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); pass->bindBuffers(nullptr, nullptr, helper->fVertBuffer); pass->draw(kBoxCountX * 6, y * kBoxCountX * 6); } }); run_test(dContext, "drawIndexed", reporter, sdc, gold, [&](DrawMeshHelper* helper) { helper->fIndexBuffer = helper->getIndexBuffer(); VALIDATE(helper->fIndexBuffer); helper->fVertBuffer = helper->makeVertexBuffer(vertexData); VALIDATE(helper->fVertBuffer); }, [&](DrawMeshHelper* helper) { int baseRepetition = 0; int i = 0; // Start at various repetitions within the patterned index buffer to exercise base // index. while (i < kBoxCount) { static_assert(kIndexPatternRepeatCount >= 3); int repetitionCount = std::min(3 - baseRepetition, kBoxCount - i); auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer); pass->drawIndexed(repetitionCount * 6, baseRepetition * 6, baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1, (i - baseRepetition) * 4); baseRepetition = (baseRepetition + 1) % 3; i += repetitionCount; } }); run_test(dContext, "drawIndexPattern", reporter, sdc, gold, [&](DrawMeshHelper* helper) { helper->fIndexBuffer = helper->getIndexBuffer(); VALIDATE(helper->fIndexBuffer); helper->fVertBuffer = helper->makeVertexBuffer(vertexData); VALIDATE(helper->fVertBuffer); }, [&](DrawMeshHelper* helper) { // Draw boxes one line at a time to exercise base vertex. drawIndexPattern does // not support a base index. for (int y = 0; y < kBoxCountY; ++y) { auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer); pass->drawIndexPattern(6, kBoxCountX, kIndexPatternRepeatCount, 4, y * kBoxCountX * 4); } }); for (bool indexed : {false, true}) { if (!dContext->priv().caps()->drawInstancedSupport()) { break; } run_test(dContext, indexed ? "drawIndexedInstanced" : "drawInstanced", reporter, sdc, gold, [&](DrawMeshHelper* helper) { helper->fIndexBuffer = indexed ? helper->getIndexBuffer() : nullptr; SkTArray baseIndexData; baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index. for (int i = 0; i < 6; ++i) { baseIndexData.push_back(kIndexPattern[i]); } helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(), baseIndexData.count()); helper->fInstBuffer = helper->makeVertexBuffer(boxes); VALIDATE(helper->fInstBuffer); helper->fVertBuffer = helper->makeVertexBuffer(std::vector{0,0, 0,1, 1,0, 1,1}); VALIDATE(helper->fVertBuffer); helper->fVertBuffer2 = helper->makeVertexBuffer( // for testing base vertex. std::vector{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1}); VALIDATE(helper->fVertBuffer2); }, [&](DrawMeshHelper* helper) { // Draw boxes one line at a time to exercise base instance, base vertex, and // null vertex buffer. for (int y = 0; y < kBoxCountY; ++y) { sk_sp vertexBuffer; int baseVertex = 0; switch (y % 3) { case 0: if (dContext->priv().caps()->shaderCaps()->vertexIDSupport()) { break; } [[fallthrough]]; case 1: vertexBuffer = helper->fVertBuffer; break; case 2: vertexBuffer = helper->fVertBuffer2; baseVertex = 2; break; } GrPrimitiveType primitiveType = indexed ? GrPrimitiveType::kTriangles : GrPrimitiveType::kTriangleStrip; auto pass = helper->bindPipeline(primitiveType, true, SkToBool(vertexBuffer)); if (indexed) { sk_sp indexBuffer = (y % 2) ? helper->fIndexBuffer2 : helper->fIndexBuffer; VALIDATE(indexBuffer); int baseIndex = (y % 2); pass->bindBuffers(std::move(indexBuffer), helper->fInstBuffer, std::move(vertexBuffer)); pass->drawIndexedInstanced(6, baseIndex, kBoxCountX, y * kBoxCountX, baseVertex); } else { pass->bindBuffers(nullptr, helper->fInstBuffer, std::move(vertexBuffer)); pass->drawInstanced(kBoxCountX, y * kBoxCountY, 4, baseVertex); } } }); } for (bool indexed : {false, true}) { if (!dContext->priv().caps()->drawInstancedSupport()) { break; } run_test(dContext, (indexed) ? "drawIndexedIndirect" : "drawIndirect", reporter, sdc, gold, [&](DrawMeshHelper* helper) { SkTArray baseIndexData; baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index. for (int j = 0; j < kBoxCountY; ++j) { for (int i = 0; i < 6; ++i) { baseIndexData.push_back(kIndexPattern[i]); } } helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(), baseIndexData.count()); VALIDATE(helper->fIndexBuffer2); helper->fInstBuffer = helper->makeVertexBuffer(boxes); VALIDATE(helper->fInstBuffer); helper->fVertBuffer = helper->makeVertexBuffer(std::vector{ -1,-1, 0,0, 0,1, 1,0, 1,1, -1,-1, 0,0, 1,0, 0,1, 1,1}); VALIDATE(helper->fVertBuffer); GrDrawIndirectWriter indirectWriter; GrDrawIndexedIndirectWriter indexedIndirectWriter; if (indexed) { // Make helper->fDrawIndirectBufferOffset nonzero. sk_sp ignoredBuff; size_t ignoredOffset; // Make a superfluous call to makeDrawIndirectSpace in order to test // "offsetInBytes!=0" for the actual call to makeDrawIndexedIndirectSpace. helper->target()->makeDrawIndirectSpace(29, &ignoredBuff, &ignoredOffset); indexedIndirectWriter = helper->target()->makeDrawIndexedIndirectSpace( kBoxCountY, &helper->fDrawIndirectBuffer, &helper->fDrawIndirectBufferOffset); } else { // Make helper->fDrawIndirectBufferOffset nonzero. sk_sp ignoredBuff; size_t ignoredOffset; // Make a superfluous call to makeDrawIndexedIndirectSpace in order to test // "offsetInBytes!=0" for the actual call to makeDrawIndirectSpace. helper->target()->makeDrawIndexedIndirectSpace(7, &ignoredBuff, &ignoredOffset); indirectWriter = helper->target()->makeDrawIndirectSpace( kBoxCountY, &helper->fDrawIndirectBuffer, &helper->fDrawIndirectBufferOffset); } // Draw boxes one line at a time to exercise multiple draws. for (int y = 0; y < kBoxCountY; ++y) { int baseVertex = (y % 2) ? 1 : 6; if (indexed) { int baseIndex = 1 + y * 6; indexedIndirectWriter.writeIndexed(6, baseIndex, kBoxCountX, y * kBoxCountX, baseVertex); } else { indirectWriter.write(kBoxCountX, y * kBoxCountX, 4, baseVertex); } } }, [&](DrawMeshHelper* helper) { GrOpsRenderPass* pass; if (indexed) { pass = helper->bindPipeline(GrPrimitiveType::kTriangles, true, true); pass->bindBuffers(helper->fIndexBuffer2, helper->fInstBuffer, helper->fVertBuffer); for (int i = 0; i < 3; ++i) { int start = kBoxCountY * i / 3; int end = kBoxCountY * (i + 1) / 3; size_t offset = helper->fDrawIndirectBufferOffset + start * sizeof(GrDrawIndexedIndirectCommand); pass->drawIndexedIndirect(helper->fDrawIndirectBuffer.get(), offset, end - start); } } else { pass = helper->bindPipeline(GrPrimitiveType::kTriangleStrip, true, true); pass->bindBuffers(nullptr, helper->fInstBuffer, helper->fVertBuffer); for (int i = 0; i < 2; ++i) { int start = kBoxCountY * i / 2; int end = kBoxCountY * (i + 1) / 2; size_t offset = helper->fDrawIndirectBufferOffset + start * sizeof(GrDrawIndirectCommand); pass->drawIndirect(helper->fDrawIndirectBuffer.get(), offset, end - start); } } }); } } //////////////////////////////////////////////////////////////////////////////////////////////////// namespace { class MeshTestOp : public GrDrawOp { public: DEFINE_OP_CLASS_ID static GrOp::Owner Make(GrRecordingContext* rContext, std::function prepareFn, std::function executeFn) { return GrOp::Make(rContext, prepareFn, executeFn); } private: friend class GrOp; // for ctor MeshTestOp(std::function prepareFn, std::function executeFn) : INHERITED(ClassID()), fPrepareFn(prepareFn), fExecuteFn(executeFn) { this->setBounds( SkRect::MakeIWH(kImageWidth, kImageHeight), HasAABloat::kNo, IsHairline::kNo); } const char* name() const override { return "GrMeshTestOp"; } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*, GrClampType) override { return GrProcessorSet::EmptySetAnalysis(); } void onPrePrepare(GrRecordingContext*, const GrSurfaceProxyView& writeView, GrAppliedClip*, const GrDstProxyView&, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override {} void onPrepare(GrOpFlushState* state) override { fHelper = std::make_unique(state); fPrepareFn(fHelper.get()); } void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override { fExecuteFn(fHelper.get()); } std::unique_ptr fHelper; std::function fPrepareFn; std::function fExecuteFn; using INHERITED = GrDrawOp; }; class MeshTestProcessor : public GrGeometryProcessor { public: static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool instanced, bool hasVertexBuffer) { return arena->make([&](void* ptr) { return new (ptr) MeshTestProcessor(instanced, hasVertexBuffer); }); } const char* name() const override { return "GrMeshTestProcessor"; } void addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const final { b->add32(fInstanceLocation.isInitialized()); b->add32(fVertexPosition.isInitialized()); } std::unique_ptr makeProgramImpl(const GrShaderCaps&) const final; private: class Impl; const Attribute& inColor() const { return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor; } MeshTestProcessor(bool instanced, bool hasVertexBuffer) : INHERITED(kGrMeshTestProcessor_ClassID) { if (instanced) { fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; this->setInstanceAttributesWithImplicitOffsets(&fInstanceLocation, 2); if (hasVertexBuffer) { fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; this->setVertexAttributesWithImplicitOffsets(&fVertexPosition, 1); } } else { fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; this->setVertexAttributesWithImplicitOffsets(&fVertexPosition, 2); } } Attribute fVertexPosition; Attribute fVertexColor; Attribute fInstanceLocation; Attribute fInstanceColor; using INHERITED = GrGeometryProcessor; }; } // anonymous namespace std::unique_ptr MeshTestProcessor::makeProgramImpl( const GrShaderCaps&) const { class Impl : public ProgramImpl { public: void setData(const GrGLSLProgramDataManager&, const GrShaderCaps&, const GrGeometryProcessor&) final {} private: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final { const MeshTestProcessor& mp = args.fGeomProc.cast(); GrGLSLVertexBuilder* v = args.fVertBuilder; GrGLSLFPFragmentBuilder* f = args.fFragBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; varyingHandler->emitAttributes(mp); f->codeAppendf("half4 %s;", args.fOutputColor); varyingHandler->addPassThroughAttribute(mp.inColor().asShaderVar(), args.fOutputColor); if (!mp.fInstanceLocation.isInitialized()) { v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name()); } else { if (mp.fVertexPosition.isInitialized()) { v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name()); } else { v->codeAppend("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);"); } v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(), kBoxSize); } gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex"); f->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage); } }; return std::make_unique(); } //////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp DrawMeshHelper::makeIndexBuffer(const uint16_t indices[], int count) { return sk_sp(fState->resourceProvider()->createBuffer( count * sizeof(uint16_t), GrGpuBufferType::kIndex, kDynamic_GrAccessPattern, indices)); } template sk_sp DrawMeshHelper::makeVertexBuffer(const T* data, int count) { return sk_sp(fState->resourceProvider()->createBuffer( count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data)); } sk_sp DrawMeshHelper::getIndexBuffer() { SKGPU_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); return fState->resourceProvider()->findOrCreatePatternedIndexBuffer( kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey); } GrOpsRenderPass* DrawMeshHelper::bindPipeline(GrPrimitiveType primitiveType, bool isInstanced, bool hasVertexBuffer) { GrProcessorSet processorSet(SkBlendMode::kSrc); // TODO: add a GrProcessorSet testing helper to make this easier SkPMColor4f overrideColor; processorSet.finalize(GrProcessorAnalysisColor(), GrProcessorAnalysisCoverage::kNone, fState->appliedClip(), nullptr, fState->caps(), GrClampType::kAuto, &overrideColor); auto pipeline = GrSimpleMeshDrawOpHelper::CreatePipeline(fState, std::move(processorSet), GrPipeline::InputFlags::kNone); GrGeometryProcessor* mtp = MeshTestProcessor::Make(fState->allocator(), isInstanced, hasVertexBuffer); GrProgramInfo programInfo(fState->caps(), fState->writeView(), fState->usesMSAASurface(), pipeline, &GrUserStencilSettings::kUnused, mtp, primitiveType, 0, fState->renderPassBarriers(), fState->colorLoadOp()); fState->opsRenderPass()->bindPipeline(programInfo, SkRect::MakeIWH(kImageWidth, kImageHeight)); return fState->opsRenderPass(); } static void run_test(GrDirectContext* dContext, const char* testName, skiatest::Reporter* reporter, const std::unique_ptr& sdc, const SkBitmap& gold, std::function prepareFn, std::function executeFn) { const int w = gold.width(), h = gold.height(); const uint32_t* goldPx = reinterpret_cast(gold.getPixels()); if (h != sdc->height() || w != sdc->width()) { ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName); return; } if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) { ERRORF(reporter, "[%s] unexpected row bytes in gold image", testName); return; } GrPixmap resultPM = GrPixmap::Allocate(gold.info()); sdc->clear(SkPMColor4f::FromBytes_RGBA(0xbaaaaaad)); sdc->addDrawOp(MeshTestOp::Make(dContext, prepareFn, executeFn)); sdc->readPixels(dContext, resultPM, {0, 0}); #ifdef WRITE_PNG_CONTEXT_TYPE #define STRINGIFY(X) #X #define TOSTRING(X) STRINGIFY(X) SkString filename; filename.printf("GrMeshTest_%s_%s.png", TOSTRING(WRITE_PNG_CONTEXT_TYPE), testName); SkDebugf("writing %s...\n", filename.c_str()); ToolUtils::EncodeImageToFile(filename.c_str(), resultPM, SkEncodedImageFormat::kPNG, 100); #endif for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t expected = goldPx[y * kImageWidth + x]; uint32_t actual = static_cast(resultPM.addr())[y * kImageWidth + x]; if (expected != actual) { ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x", testName, x, y, actual, expected); return; } } } }