#include "CubicIntersection.h" /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 * * This paper proves that Syvester's method can compute the implicit form of * the quadratic from the parameterzied form. * * Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form) * y = e*t*t*t + f*t*t + g*t + h * * we want to find an equation of the implicit form: * * A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0 * * The implicit form can be expressed as a 6x6 determinant, as shown. * * The resultant obtained by Syvester's method is * * | a b c (d - x) 0 0 | * | 0 a b c (d - x) 0 | * | 0 0 a b c (d - x) | * | e f g (h - y) 0 0 | * | 0 e f g (h - y) 0 | * | 0 0 e f g (h - y) | * * which, according to Mathematica, expands as shown below. * * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t] * * -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + * 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - * b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - * 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + * a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - * 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + * a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + * a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - * 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - * 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + * b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + * 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + * 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - * 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + * 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - * c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - * 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - * b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - * 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + * 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - * 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + * a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - * 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - * 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + * 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3 */ enum { xxx_coeff, xxy_coeff, xyy_coeff, yyy_coeff, xx_coeff, xy_coeff, yy_coeff, x_coeff, y_coeff, c_coeff, coeff_count }; // FIXME: factoring version unwritten // static bool straight_forward = true; /* from CubicParameterizationCode.cpp output: * double A = e * e * e; * double B = -3 * a * e * e; * double C = 3 * a * a * e; * double D = -a * a * a; */ static void calc_ABCD(double a, double e, double p[coeff_count]) { double ee = e * e; p[xxx_coeff] = e * ee; p[xxy_coeff] = -3 * a * ee; double aa = a * a; p[xyy_coeff] = 3 * aa * e; p[yyy_coeff] = -aa * a; } /* CubicParameterizationCode.cpp turns Mathematica output into C. * Rather than edit the lines below, please edit the code there instead. */ // start of generated code static double calc_E(double a, double b, double c, double d, double e, double f, double g, double h) { return -3 * d * e * e * e + c * e * e * f - b * e * f * f + a * f * f * f + 2 * b * e * e * g - 3 * a * e * f * g + 3 * a * e * e * h; } static double calc_F(double a, double b, double c, double d, double e, double f, double g, double h) { return -3 * b * c * e * e + 6 * a * d * e * e + 2 * b * b * e * f + a * c * e * f - 2 * a * b * f * f - a * b * e * g + 3 * a * a * f * g - 6 * a * a * e * h; } static double calc_G(double a, double b, double c, double d, double e, double f, double g, double h) { return -b * b * b * e + 3 * a * b * c * e - 3 * a * a * d * e + a * b * b * f - 2 * a * a * c * f - a * a * b * g + 3 * a * a * a * h; } static double calc_H(double a, double b, double c, double d, double e, double f, double g, double h) { return 3 * d * d * e * e * e - 2 * c * d * e * e * f + 2 * b * d * e * f * f - 2 * a * d * f * f * f + c * c * e * e * g - 4 * b * d * e * e * g - b * c * e * f * g + 6 * a * d * e * f * g + a * c * f * f * g + b * b * e * g * g - 2 * a * c * e * g * g - a * b * f * g * g + a * a * g * g * g + 3 * b * c * e * e * h - 6 * a * d * e * e * h - 2 * b * b * e * f * h - a * c * e * f * h + 2 * a * b * f * f * h + a * b * e * g * h - 3 * a * a * f * g * h + 3 * a * a * e * h * h; } static double calc_I(double a, double b, double c, double d, double e, double f, double g, double h) { return -c * c * c * e * e + 3 * b * c * d * e * e - 3 * a * d * d * e * e + b * c * c * e * f - 2 * b * b * d * e * f - a * c * d * e * f - a * c * c * f * f + 2 * a * b * d * f * f - b * b * c * e * g + 2 * a * c * c * e * g + a * b * d * e * g + a * b * c * f * g - 3 * a * a * d * f * g - a * a * c * g * g + 2 * b * b * b * e * h - 6 * a * b * c * e * h + 6 * a * a * d * e * h - 2 * a * b * b * f * h + 4 * a * a * c * f * h + 2 * a * a * b * g * h - 3 * a * a * a * h * h; } static double calc_J(double a, double b, double c, double d, double e, double f, double g, double h) { return -d * d * d * e * e * e + c * d * d * e * e * f - b * d * d * e * f * f + a * d * d * f * f * f - c * c * d * e * e * g + 2 * b * d * d * e * e * g + b * c * d * e * f * g - 3 * a * d * d * e * f * g - a * c * d * f * f * g - b * b * d * e * g * g + 2 * a * c * d * e * g * g + a * b * d * f * g * g - a * a * d * g * g * g + c * c * c * e * e * h - 3 * b * c * d * e * e * h + 3 * a * d * d * e * e * h - b * c * c * e * f * h + 2 * b * b * d * e * f * h + a * c * d * e * f * h + a * c * c * f * f * h - 2 * a * b * d * f * f * h + b * b * c * e * g * h - 2 * a * c * c * e * g * h - a * b * d * e * g * h - a * b * c * f * g * h + 3 * a * a * d * f * g * h + a * a * c * g * g * h - b * b * b * e * h * h + 3 * a * b * c * e * h * h - 3 * a * a * d * e * h * h + a * b * b * f * h * h - 2 * a * a * c * f * h * h - a * a * b * g * h * h + a * a * a * h * h * h; } // end of generated code static double (*calc_proc[])(double a, double b, double c, double d, double e, double f, double g, double h) = { calc_E, calc_F, calc_G, calc_H, calc_I, calc_J }; /* Control points to parametric coefficients s = 1 - t Attt + 3Btts + 3Ctss + Dsss == Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) == Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) == Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt == D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt a = A - 3*B + 3*C - D b = 3*B - 6*C + 3*D c = 3*C - 3*D d = D */ /* http://www.algorithmist.net/bezier3.html p = 3 * A q = 3 * B r = 3 * C a = A b = q - p c = p - 2 * q + r d = D - A + q - r B(t) = a + t * (b + t * (c + t * d)) so B(t) = a + t*b + t*t*(c + t*d) = a + t*b + t*t*c + t*t*t*d */ static void set_abcd(const double* cubic, double& a, double& b, double& c, double& d) { a = cubic[0]; // a = A b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily) c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily) d = cubic[6]; // d = D a += -b + c - d; // a = A - 3*B + 3*C - D } static void calc_bc(const double d, double& b, double& c) { b -= 3 * c; // b = 3*B - 3*C c -= 3 * d; // c = 3*C - 3*D b -= c; // b = 3*B - 6*C + 3*D } static void alt_set_abcd(const double* cubic, double& a, double& b, double& c, double& d) { a = cubic[0]; double p = 3 * a; double q = 3 * cubic[2]; double r = 3 * cubic[4]; b = q - p; c = p - 2 * q + r; d = cubic[6] - a + q - r; } const bool try_alt = true; bool implicit_matches(const Cubic& one, const Cubic& two) { double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc. double p2[coeff_count]; double a1, b1, c1, d1; if (try_alt) alt_set_abcd(&one[0].x, a1, b1, c1, d1); else set_abcd(&one[0].x, a1, b1, c1, d1); double e1, f1, g1, h1; if (try_alt) alt_set_abcd(&one[0].y, e1, f1, g1, h1); else set_abcd(&one[0].y, e1, f1, g1, h1); calc_ABCD(a1, e1, p1); double a2, b2, c2, d2; if (try_alt) alt_set_abcd(&two[0].x, a2, b2, c2, d2); else set_abcd(&two[0].x, a2, b2, c2, d2); double e2, f2, g2, h2; if (try_alt) alt_set_abcd(&two[0].y, e2, f2, g2, h2); else set_abcd(&two[0].y, e2, f2, g2, h2); calc_ABCD(a2, e2, p2); int first = 0; for (int index = 0; index < coeff_count; ++index) { if (!try_alt && index == xx_coeff) { calc_bc(d1, b1, c1); calc_bc(h1, f1, g1); calc_bc(d2, b2, c2); calc_bc(h2, f2, g2); } if (index >= xx_coeff) { int procIndex = index - xx_coeff; p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1); p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2); } if (approximately_zero(p1[index]) || approximately_zero(p2[index])) { first += first == index; continue; } if (first == index) { continue; } if (!approximately_equal(p1[index] * p2[first], p1[first] * p2[index])) { return false; } } return true; } static double tangent(const double* cubic, double t) { double a, b, c, d; set_abcd(cubic, a, b, c, d); calc_bc(d, b, c); return 3 * a * t * t + 2 * b * t + c; } void tangent(const Cubic& cubic, double t, _Point& result) { result.x = tangent(&cubic[0].x, t); result.y = tangent(&cubic[0].y, t); } // unit test to return and validate parametric coefficients #include "CubicParameterization_TestUtility.cpp"