/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This is a GPU-backend specific test. It relies on static intializers to work #include "include/core/SkTypes.h" #include "include/core/SkSurface.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSurfaceProxy.h" #include "src/gpu/GrTexture.h" #include "src/gpu/SkGr.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/gpu/GrContextFactory.h" using sk_gpu_test::GrContextFactory; void fill_transfer_data(int left, int top, int width, int height, int bufferWidth, GrColorType dstType, char* dst) { size_t dstBpp = GrColorTypeBytesPerPixel(dstType); auto dstLocation = [dst, dstBpp, bufferWidth](int x, int y) { return dst + y * dstBpp * bufferWidth + x * dstBpp; }; // build red-green gradient for (int j = top; j < top + height; ++j) { for (int i = left; i < left + width; ++i) { auto r = (unsigned int)(256.f*((i - left) / (float)width)); auto g = (unsigned int)(256.f*((j - top) / (float)height)); r -= (r >> 8); g -= (g >> 8); // set b and a channels to be inverse of r and g just to have interesting values to // test. uint32_t srcPixel = GrColorPackRGBA(r, g, 0xff - r, 0xff - g); GrImageInfo srcInfo(GrColorType::kRGBA_8888, kUnpremul_SkAlphaType, nullptr, 1, 1); GrImageInfo dstInfo(dstType, kUnpremul_SkAlphaType, nullptr, 1, 1); GrConvertPixels(dstInfo, dstLocation(i, j), dstBpp, srcInfo, &srcPixel, 4); } } } void determine_tolerances(GrColorType a, GrColorType b, float tolerances[4]) { std::fill_n(tolerances, 4, 0); auto descA = GrGetColorTypeDesc(a); auto descB = GrGetColorTypeDesc(b); // For each channel x set the tolerance to 1 / (2^min(bits_in_a, bits_in_b) - 1) unless // one color type is missing the channel. In that case leave it at 0. If the other color // has the channel then it better be exactly 1 for alpha or 0 for rgb. for (int i = 0; i < 4; ++i) { if (descA[i] != descB[i]) { auto m = std::min(descA[i], descB[i]); if (m) { tolerances[i] = 1.f / (m - 1); } } } } bool read_pixels_from_texture(GrTexture* texture, GrColorType colorType, char* dst, float tolerances[4]) { auto* context = texture->getContext(); auto* gpu = context->priv().getGpu(); auto* caps = context->priv().caps(); int w = texture->width(); int h = texture->height(); size_t rowBytes = GrColorTypeBytesPerPixel(colorType) * w; GrCaps::SupportedRead supportedRead = caps->supportedReadPixelsColorType(colorType, texture->backendFormat(), colorType); std::fill_n(tolerances, 4, 0); if (supportedRead.fColorType != colorType) { size_t tmpRowBytes = GrColorTypeBytesPerPixel(supportedRead.fColorType) * w; std::unique_ptr tmpPixels(new char[tmpRowBytes * h]); if (!gpu->readPixels(texture, 0, 0, w, h, colorType, supportedRead.fColorType, tmpPixels.get(), tmpRowBytes)) { return false; } GrImageInfo tmpInfo(supportedRead.fColorType, kUnpremul_SkAlphaType, nullptr, w, h); GrImageInfo dstInfo(colorType, kUnpremul_SkAlphaType, nullptr, w, h); determine_tolerances(tmpInfo.colorType(), dstInfo.colorType(), tolerances); return GrConvertPixels(dstInfo, dst, rowBytes, tmpInfo, tmpPixels.get(), tmpRowBytes, false); } return gpu->readPixels(texture, 0, 0, w, h, colorType, supportedRead.fColorType, dst, rowBytes); } void basic_transfer_to_test(skiatest::Reporter* reporter, GrDirectContext* dContext, GrColorType colorType, GrRenderable renderable) { if (GrCaps::kNone_MapFlags == dContext->priv().caps()->mapBufferFlags()) { return; } auto* caps = dContext->priv().caps(); auto backendFormat = caps->getDefaultBackendFormat(colorType, renderable); if (!backendFormat.isValid()) { return; } auto resourceProvider = dContext->priv().resourceProvider(); GrGpu* gpu = dContext->priv().getGpu(); static constexpr SkISize kTexDims = {16, 16}; int srcBufferWidth = caps->writePixelsRowBytesSupport() ? 20 : 16; const int kBufferHeight = 16; sk_sp tex = resourceProvider->createTexture(kTexDims, backendFormat, renderable, 1, GrMipmapped::kNo, SkBudgeted::kNo, GrProtected::kNo); if (!tex) { ERRORF(reporter, "Could not create texture"); return; } // We validate the results using GrGpu::readPixels, so exit if this is not supported. // TODO: Do this through GrSurfaceContext once it works for all color types or support // kCopyToTexture2D here. if (GrCaps::SurfaceReadPixelsSupport::kSupported != caps->surfaceSupportsReadPixels(tex.get())) { return; } // GL requires a texture to be framebuffer bindable to call glReadPixels. However, we have not // incorporated that test into surfaceSupportsReadPixels(). TODO: Remove this once we handle // drawing to a bindable format. if (!caps->isFormatAsColorTypeRenderable(colorType, tex->backendFormat())) { return; } // The caps tell us what color type we are allowed to upload and read back from this texture, // either of which may differ from 'colorType'. GrCaps::SupportedWrite allowedSrc = caps->supportedWritePixelsColorType(colorType, tex->backendFormat(), colorType); size_t srcRowBytes = GrColorTypeBytesPerPixel(allowedSrc.fColorType) * srcBufferWidth; std::unique_ptr srcData(new char[kTexDims.fHeight * srcRowBytes]); fill_transfer_data(0, 0, kTexDims.fWidth, kTexDims.fHeight, srcBufferWidth, allowedSrc.fColorType, srcData.get()); // create and fill transfer buffer size_t size = srcRowBytes * kBufferHeight; sk_sp buffer(resourceProvider->createBuffer(size, GrGpuBufferType::kXferCpuToGpu, kDynamic_GrAccessPattern)); if (!buffer) { return; } void* data = buffer->map(); if (!buffer) { ERRORF(reporter, "Could not map buffer"); return; } memcpy(data, srcData.get(), size); buffer->unmap(); ////////////////////////// // transfer full data bool result; result = gpu->transferPixelsTo(tex.get(), 0, 0, kTexDims.fWidth, kTexDims.fHeight, colorType, allowedSrc.fColorType, buffer.get(), 0, srcRowBytes); REPORTER_ASSERT(reporter, result); size_t dstRowBytes = GrColorTypeBytesPerPixel(colorType) * kTexDims.fWidth; std::unique_ptr dstBuffer(new char[dstRowBytes * kTexDims.fHeight]()); float compareTolerances[4] = {}; result = read_pixels_from_texture(tex.get(), colorType, dstBuffer.get(), compareTolerances); if (!result) { ERRORF(reporter, "Could not read pixels from texture, color type: %d", static_cast(colorType)); return; } auto error = std::function( [reporter, colorType](int x, int y, const float diffs[4]) { ERRORF(reporter, "Error at (%d %d) in transfer, color type: %s, diffs: (%f, %f, %f, %f)", x, y, GrColorTypeToStr(colorType), diffs[0], diffs[1], diffs[2], diffs[3]); }); GrImageInfo srcInfo(allowedSrc.fColorType, kUnpremul_SkAlphaType, nullptr, tex->width(), tex->height()); GrImageInfo dstInfo(colorType, kUnpremul_SkAlphaType, nullptr, tex->width(), tex->height()); ComparePixels(srcInfo, srcData.get(), srcRowBytes, dstInfo, dstBuffer.get(), dstRowBytes, compareTolerances, error); ////////////////////////// // transfer partial data // We're relying on this cap to write partial texture data if (!caps->writePixelsRowBytesSupport()) { return; } // We keep a 1 to 1 correspondence between pixels in the buffer and the entire texture. We // update the contents of a sub-rect of the buffer and push that rect to the texture. We start // with a left sub-rect inset of 2 but may adjust that so we can fulfill the transfer buffer // offset alignment requirement. int left = 2; const int top = 10; const int width = 10; const int height = 2; size_t offset = top * srcRowBytes + left * GrColorTypeBytesPerPixel(allowedSrc.fColorType); while (offset % allowedSrc.fOffsetAlignmentForTransferBuffer) { offset += GrColorTypeBytesPerPixel(allowedSrc.fColorType); ++left; // We're assuming that the required alignment is 1 or a small multiple of the bpp, which // it is currently for all color types across all backends. SkASSERT(left + width <= tex->width()); } // change color of subrectangle fill_transfer_data(left, top, width, height, srcBufferWidth, allowedSrc.fColorType, srcData.get()); data = buffer->map(); memcpy(data, srcData.get(), size); buffer->unmap(); result = gpu->transferPixelsTo(tex.get(), left, top, width, height, colorType, allowedSrc.fColorType, buffer.get(), offset, srcRowBytes); if (!result) { gpu->transferPixelsTo(tex.get(), left, top, width, height, colorType, allowedSrc.fColorType, buffer.get(), offset, srcRowBytes); ERRORF(reporter, "Could not transfer pixels to texture, color type: %d", static_cast(colorType)); return; } result = read_pixels_from_texture(tex.get(), colorType, dstBuffer.get(), compareTolerances); if (!result) { ERRORF(reporter, "Could not read pixels from texture, color type: %d", static_cast(colorType)); return; } ComparePixels(srcInfo, srcData.get(), srcRowBytes, dstInfo, dstBuffer.get(), dstRowBytes, compareTolerances, error); } void basic_transfer_from_test(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo, GrColorType colorType, GrRenderable renderable) { auto context = ctxInfo.directContext(); auto caps = context->priv().caps(); if (GrCaps::kNone_MapFlags == caps->mapBufferFlags()) { return; } auto resourceProvider = context->priv().resourceProvider(); GrGpu* gpu = context->priv().getGpu(); static constexpr SkISize kTexDims = {16, 16}; // We'll do a full texture read into the buffer followed by a partial read. These values // describe the partial read subrect. const int kPartialLeft = 2; const int kPartialTop = 10; const int kPartialWidth = 10; const int kPartialHeight = 2; // create texture auto format = context->priv().caps()->getDefaultBackendFormat(colorType, renderable); if (!format.isValid()) { return; } size_t textureDataBpp = GrColorTypeBytesPerPixel(colorType); size_t textureDataRowBytes = kTexDims.fWidth * textureDataBpp; std::unique_ptr textureData(new char[kTexDims.fHeight * textureDataRowBytes]); fill_transfer_data(0, 0, kTexDims.fWidth, kTexDims.fHeight, kTexDims.fHeight, colorType, textureData.get()); GrMipLevel data; data.fPixels = textureData.get(); data.fRowBytes = textureDataRowBytes; sk_sp tex = resourceProvider->createTexture(kTexDims, format, colorType, renderable, 1, SkBudgeted::kNo, GrMipMapped::kNo, GrProtected::kNo, &data); if (!tex) { return; } if (GrCaps::SurfaceReadPixelsSupport::kSupported != caps->surfaceSupportsReadPixels(tex.get())) { return; } // GL requires a texture to be framebuffer bindable to call glReadPixels. However, we have not // incorporated that test into surfaceSupportsReadPixels(). TODO: Remove this once we handle // drawing to a bindable format. if (!caps->isFormatAsColorTypeRenderable(colorType, tex->backendFormat())) { return; } // Create the transfer buffer. auto allowedRead = caps->supportedReadPixelsColorType(colorType, tex->backendFormat(), colorType); GrImageInfo readInfo(allowedRead.fColorType, kUnpremul_SkAlphaType, nullptr, kTexDims); size_t bpp = GrColorTypeBytesPerPixel(allowedRead.fColorType); size_t fullBufferRowBytes = kTexDims.fWidth * bpp; size_t partialBufferRowBytes = kPartialWidth * bpp; size_t offsetAlignment = allowedRead.fOffsetAlignmentForTransferBuffer; SkASSERT(offsetAlignment); size_t bufferSize = fullBufferRowBytes * kTexDims.fHeight; // Arbitrary starting offset for the partial read. size_t partialReadOffset = GrAlignTo(11, offsetAlignment); bufferSize = std::max(bufferSize, partialReadOffset + partialBufferRowBytes * kPartialHeight); sk_sp buffer(resourceProvider->createBuffer( bufferSize, GrGpuBufferType::kXferGpuToCpu, kDynamic_GrAccessPattern)); REPORTER_ASSERT(reporter, buffer); if (!buffer) { return; } int expectedTransferCnt = 0; gpu->stats()->reset(); ////////////////////////// // transfer full data bool result = gpu->transferPixelsFrom(tex.get(), 0, 0, kTexDims.fWidth, kTexDims.fHeight, colorType, allowedRead.fColorType, buffer.get(), 0); if (!result) { ERRORF(reporter, "transferPixelsFrom failed."); return; } ++expectedTransferCnt; if (context->priv().caps()->mapBufferFlags() & GrCaps::kAsyncRead_MapFlag) { gpu->submitToGpu(true); } // Copy the transfer buffer contents to a temporary so we can manipulate it. const auto* map = reinterpret_cast(buffer->map()); REPORTER_ASSERT(reporter, map); if (!map) { ERRORF(reporter, "Failed to map transfer buffer."); return; } std::unique_ptr transferData(new char[kTexDims.fHeight * fullBufferRowBytes]); memcpy(transferData.get(), map, fullBufferRowBytes * kTexDims.fHeight); buffer->unmap(); GrImageInfo transferInfo(allowedRead.fColorType, kUnpremul_SkAlphaType, nullptr, kTexDims); float tol[4]; determine_tolerances(allowedRead.fColorType, colorType, tol); auto error = std::function( [reporter, colorType](int x, int y, const float diffs[4]) { ERRORF(reporter, "Error at (%d %d) in transfer, color type: %s, diffs: (%f, %f, %f, %f)", x, y, GrColorTypeToStr(colorType), diffs[0], diffs[1], diffs[2], diffs[3]); }); GrImageInfo textureDataInfo(colorType, kUnpremul_SkAlphaType, nullptr, kTexDims); ComparePixels(textureDataInfo, textureData.get(), textureDataRowBytes, transferInfo, transferData.get(), fullBufferRowBytes, tol, error); /////////////////////// // Now test a partial read at an offset into the buffer. result = gpu->transferPixelsFrom(tex.get(), kPartialLeft, kPartialTop, kPartialWidth, kPartialHeight, colorType, allowedRead.fColorType, buffer.get(), partialReadOffset); if (!result) { ERRORF(reporter, "transferPixelsFrom failed."); return; } ++expectedTransferCnt; if (context->priv().caps()->mapBufferFlags() & GrCaps::kAsyncRead_MapFlag) { gpu->submitToGpu(true); } map = reinterpret_cast(buffer->map()); REPORTER_ASSERT(reporter, map); if (!map) { ERRORF(reporter, "Failed to map transfer buffer."); return; } const char* bufferStart = reinterpret_cast(map) + partialReadOffset; memcpy(transferData.get(), bufferStart, partialBufferRowBytes * kTexDims.fHeight); buffer->unmap(); transferInfo = transferInfo.makeWH(kPartialWidth, kPartialHeight); const char* textureDataStart = textureData.get() + textureDataRowBytes * kPartialTop + textureDataBpp * kPartialLeft; textureDataInfo = textureDataInfo.makeWH(kPartialWidth, kPartialHeight); ComparePixels(textureDataInfo, textureDataStart, textureDataRowBytes, transferInfo, transferData.get(), partialBufferRowBytes, tol, error); #if GR_GPU_STATS REPORTER_ASSERT(reporter, gpu->stats()->transfersFromSurface() == expectedTransferCnt); #else (void)expectedTransferCnt; #endif } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(TransferPixelsToTextureTest, reporter, ctxInfo) { if (!ctxInfo.directContext()->priv().caps()->transferFromBufferToTextureSupport()) { return; } for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { for (auto colorType : { GrColorType::kAlpha_8, GrColorType::kBGR_565, GrColorType::kABGR_4444, GrColorType::kRGBA_8888, GrColorType::kRGBA_8888_SRGB, // GrColorType::kRGB_888x, Broken in GL until we have kRGB_888 GrColorType::kRG_88, GrColorType::kBGRA_8888, GrColorType::kRGBA_1010102, GrColorType::kBGRA_1010102, GrColorType::kGray_8, GrColorType::kAlpha_F16, GrColorType::kRGBA_F16, GrColorType::kRGBA_F16_Clamped, GrColorType::kRGBA_F32, GrColorType::kAlpha_16, GrColorType::kRG_1616, GrColorType::kRGBA_16161616, GrColorType::kRG_F16, }) { basic_transfer_to_test(reporter, ctxInfo.directContext(), colorType, renderable); } } } // TODO(bsalomon): Metal DEF_GPUTEST_FOR_RENDERING_CONTEXTS(TransferPixelsFromTextureTest, reporter, ctxInfo) { if (!ctxInfo.directContext()->priv().caps()->transferFromSurfaceToBufferSupport()) { return; } for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { for (auto colorType : { GrColorType::kAlpha_8, GrColorType::kAlpha_16, GrColorType::kBGR_565, GrColorType::kABGR_4444, GrColorType::kRGBA_8888, GrColorType::kRGBA_8888_SRGB, // GrColorType::kRGB_888x, Broken in GL until we have kRGB_888 GrColorType::kRG_88, GrColorType::kBGRA_8888, GrColorType::kRGBA_1010102, GrColorType::kBGRA_1010102, GrColorType::kGray_8, GrColorType::kAlpha_F16, GrColorType::kRGBA_F16, GrColorType::kRGBA_F16_Clamped, GrColorType::kRGBA_F32, GrColorType::kRG_1616, GrColorType::kRGBA_16161616, GrColorType::kRG_F16, }) { basic_transfer_from_test(reporter, ctxInfo, colorType, renderable); } } }