/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkClipOp.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/core/SkRRect.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkRegion.h" #include "include/core/SkScalar.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/core/SkTypes.h" #include "include/effects/SkGradientShader.h" #include "include/gpu/GrConfig.h" #include "include/gpu/GrDirectContext.h" #include "include/private/GrResourceKey.h" #include "include/private/SkTemplates.h" #include "include/utils/SkRandom.h" #include "src/core/SkClipOpPriv.h" #include "src/core/SkClipStack.h" #include "src/core/SkTLList.h" #include "src/gpu/GrClip.h" #include "src/gpu/GrClipStackClip.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrReducedClip.h" #include "src/gpu/GrResourceCache.h" #include "src/gpu/GrTexture.h" #include "src/gpu/GrTextureProxy.h" #include "tests/Test.h" #include "tools/gpu/GrContextFactory.h" #include #include #include class GrCaps; typedef GrReducedClip::ElementList ElementList; typedef GrReducedClip::InitialState InitialState; static void test_assign_and_comparison(skiatest::Reporter* reporter) { SkClipStack s; bool doAA = false; REPORTER_ASSERT(reporter, 0 == s.getSaveCount()); // Build up a clip stack with a path, an empty clip, and a rect. s.save(); REPORTER_ASSERT(reporter, 1 == s.getSaveCount()); SkPath p; p.moveTo(5, 6); p.lineTo(7, 8); p.lineTo(5, 9); p.close(); s.clipPath(p, SkMatrix::I(), kIntersect_SkClipOp, doAA); s.save(); REPORTER_ASSERT(reporter, 2 == s.getSaveCount()); SkRect r = SkRect::MakeLTRB(1, 2, 3, 4); s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA); r = SkRect::MakeLTRB(10, 11, 12, 13); s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA); s.save(); REPORTER_ASSERT(reporter, 3 == s.getSaveCount()); r = SkRect::MakeLTRB(14, 15, 16, 17); s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA); // Test that assignment works. SkClipStack copy = s; REPORTER_ASSERT(reporter, s == copy); // Test that different save levels triggers not equal. s.restore(); REPORTER_ASSERT(reporter, 2 == s.getSaveCount()); REPORTER_ASSERT(reporter, s != copy); // Test that an equal, but not copied version is equal. s.save(); REPORTER_ASSERT(reporter, 3 == s.getSaveCount()); r = SkRect::MakeLTRB(14, 15, 16, 17); s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA); REPORTER_ASSERT(reporter, s == copy); // Test that a different op on one level triggers not equal. s.restore(); REPORTER_ASSERT(reporter, 2 == s.getSaveCount()); s.save(); REPORTER_ASSERT(reporter, 3 == s.getSaveCount()); r = SkRect::MakeLTRB(14, 15, 16, 17); s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA); REPORTER_ASSERT(reporter, s != copy); // Test that version constructed with rect-path rather than a rect is still considered equal. s.restore(); s.save(); SkPath rp; rp.addRect(r); s.clipPath(rp, SkMatrix::I(), kUnion_SkClipOp, doAA); REPORTER_ASSERT(reporter, s == copy); // Test that different rects triggers not equal. s.restore(); REPORTER_ASSERT(reporter, 2 == s.getSaveCount()); s.save(); REPORTER_ASSERT(reporter, 3 == s.getSaveCount()); r = SkRect::MakeLTRB(24, 25, 26, 27); s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA); REPORTER_ASSERT(reporter, s != copy); s.restore(); REPORTER_ASSERT(reporter, 2 == s.getSaveCount()); copy.restore(); REPORTER_ASSERT(reporter, 2 == copy.getSaveCount()); REPORTER_ASSERT(reporter, s == copy); s.restore(); REPORTER_ASSERT(reporter, 1 == s.getSaveCount()); copy.restore(); REPORTER_ASSERT(reporter, 1 == copy.getSaveCount()); REPORTER_ASSERT(reporter, s == copy); // Test that different paths triggers not equal. s.restore(); REPORTER_ASSERT(reporter, 0 == s.getSaveCount()); s.save(); REPORTER_ASSERT(reporter, 1 == s.getSaveCount()); p.addRect(r); s.clipPath(p, SkMatrix::I(), kIntersect_SkClipOp, doAA); REPORTER_ASSERT(reporter, s != copy); } static void assert_count(skiatest::Reporter* reporter, const SkClipStack& stack, int count) { SkClipStack::B2TIter iter(stack); int counter = 0; while (iter.next()) { counter += 1; } REPORTER_ASSERT(reporter, count == counter); } // Exercise the SkClipStack's bottom to top and bidirectional iterators // (including the skipToTopmost functionality) static void test_iterators(skiatest::Reporter* reporter) { SkClipStack stack; static const SkRect gRects[] = { { 0, 0, 40, 40 }, { 60, 0, 100, 40 }, { 0, 60, 40, 100 }, { 60, 60, 100, 100 } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) { // the union op will prevent these from being fused together stack.clipRect(gRects[i], SkMatrix::I(), kUnion_SkClipOp, false); } assert_count(reporter, stack, 4); // bottom to top iteration { const SkClipStack::Element* element = nullptr; SkClipStack::B2TIter iter(stack); int i; for (i = 0, element = iter.next(); element; ++i, element = iter.next()) { REPORTER_ASSERT(reporter, SkClipStack::Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()); REPORTER_ASSERT(reporter, element->getDeviceSpaceRect() == gRects[i]); } SkASSERT(i == 4); } // top to bottom iteration { const SkClipStack::Element* element = nullptr; SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart); int i; for (i = 3, element = iter.prev(); element; --i, element = iter.prev()) { REPORTER_ASSERT(reporter, SkClipStack::Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()); REPORTER_ASSERT(reporter, element->getDeviceSpaceRect() == gRects[i]); } SkASSERT(i == -1); } // skipToTopmost { const SkClipStack::Element* element = nullptr; SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart); element = iter.skipToTopmost(kUnion_SkClipOp); REPORTER_ASSERT(reporter, SkClipStack::Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()); REPORTER_ASSERT(reporter, element->getDeviceSpaceRect() == gRects[3]); } } // Exercise the SkClipStack's getConservativeBounds computation static void test_bounds(skiatest::Reporter* reporter, SkClipStack::Element::DeviceSpaceType primType) { static const int gNumCases = 20; static const SkRect gAnswerRectsBW[gNumCases] = { // A op B { 40, 40, 50, 50 }, { 10, 10, 50, 50 }, { 10, 10, 80, 80 }, { 10, 10, 80, 80 }, { 40, 40, 80, 80 }, // invA op B { 40, 40, 80, 80 }, { 0, 0, 100, 100 }, { 0, 0, 100, 100 }, { 0, 0, 100, 100 }, { 40, 40, 50, 50 }, // A op invB { 10, 10, 50, 50 }, { 40, 40, 50, 50 }, { 0, 0, 100, 100 }, { 0, 0, 100, 100 }, { 0, 0, 100, 100 }, // invA op invB { 0, 0, 100, 100 }, { 40, 40, 80, 80 }, { 0, 0, 100, 100 }, { 10, 10, 80, 80 }, { 10, 10, 50, 50 }, }; static const SkClipOp gOps[] = { kIntersect_SkClipOp, kDifference_SkClipOp, kUnion_SkClipOp, kXOR_SkClipOp, kReverseDifference_SkClipOp }; SkRect rectA, rectB; rectA.setLTRB(10, 10, 50, 50); rectB.setLTRB(40, 40, 80, 80); SkRRect rrectA, rrectB; rrectA.setOval(rectA); rrectB.setRectXY(rectB, SkIntToScalar(1), SkIntToScalar(2)); SkPath pathA, pathB; pathA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5)); pathB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5)); SkClipStack stack; SkRect devClipBound; bool isIntersectionOfRects = false; int testCase = 0; int numBitTests = SkClipStack::Element::DeviceSpaceType::kPath == primType ? 4 : 1; for (int invBits = 0; invBits < numBitTests; ++invBits) { for (size_t op = 0; op < SK_ARRAY_COUNT(gOps); ++op) { stack.save(); bool doInvA = SkToBool(invBits & 1); bool doInvB = SkToBool(invBits & 2); pathA.setFillType(doInvA ? SkPathFillType::kInverseEvenOdd : SkPathFillType::kEvenOdd); pathB.setFillType(doInvB ? SkPathFillType::kInverseEvenOdd : SkPathFillType::kEvenOdd); switch (primType) { case SkClipStack::Element::DeviceSpaceType::kShader: case SkClipStack::Element::DeviceSpaceType::kEmpty: SkDEBUGFAIL("Don't call this with kEmpty or kShader."); break; case SkClipStack::Element::DeviceSpaceType::kRect: stack.clipRect(rectA, SkMatrix::I(), kIntersect_SkClipOp, false); stack.clipRect(rectB, SkMatrix::I(), gOps[op], false); break; case SkClipStack::Element::DeviceSpaceType::kRRect: stack.clipRRect(rrectA, SkMatrix::I(), kIntersect_SkClipOp, false); stack.clipRRect(rrectB, SkMatrix::I(), gOps[op], false); break; case SkClipStack::Element::DeviceSpaceType::kPath: stack.clipPath(pathA, SkMatrix::I(), kIntersect_SkClipOp, false); stack.clipPath(pathB, SkMatrix::I(), gOps[op], false); break; } REPORTER_ASSERT(reporter, !stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID != stack.getTopmostGenID()); stack.getConservativeBounds(0, 0, 100, 100, &devClipBound, &isIntersectionOfRects); if (SkClipStack::Element::DeviceSpaceType::kRect == primType) { REPORTER_ASSERT(reporter, isIntersectionOfRects == (gOps[op] == kIntersect_SkClipOp)); } else { REPORTER_ASSERT(reporter, !isIntersectionOfRects); } SkASSERT(testCase < gNumCases); REPORTER_ASSERT(reporter, devClipBound == gAnswerRectsBW[testCase]); ++testCase; stack.restore(); } } } // Test out 'isWideOpen' entry point static void test_isWideOpen(skiatest::Reporter* reporter) { { // Empty stack is wide open. Wide open stack means that gen id is wide open. SkClipStack stack; REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } SkRect rectA, rectB; rectA.setLTRB(10, 10, 40, 40); rectB.setLTRB(50, 50, 80, 80); // Stack should initially be wide open { SkClipStack stack; REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } // Test out case where the user specifies a union that includes everything { SkClipStack stack; SkPath clipA, clipB; clipA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5)); clipA.setFillType(SkPathFillType::kInverseEvenOdd); clipB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5)); clipB.setFillType(SkPathFillType::kInverseEvenOdd); stack.clipPath(clipA, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipPath(clipB, SkMatrix::I(), kUnion_SkClipOp, false); REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } // Test out union w/ a wide open clip { SkClipStack stack; stack.clipRect(rectA, SkMatrix::I(), kUnion_SkClipOp, false); REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } // Test out empty difference from a wide open clip { SkClipStack stack; SkRect emptyRect; emptyRect.setEmpty(); stack.clipRect(emptyRect, SkMatrix::I(), kDifference_SkClipOp, false); REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } // Test out return to wide open { SkClipStack stack; stack.save(); stack.clipRect(rectA, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, !stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID != stack.getTopmostGenID()); stack.restore(); REPORTER_ASSERT(reporter, stack.isWideOpen()); REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID()); } } static int count(const SkClipStack& stack) { SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart); const SkClipStack::Element* element = nullptr; int count = 0; for (element = iter.prev(); element; element = iter.prev(), ++count) { } return count; } static void test_rect_inverse_fill(skiatest::Reporter* reporter) { // non-intersecting rectangles SkRect rect = SkRect::MakeLTRB(0, 0, 10, 10); SkPath path; path.addRect(rect); path.toggleInverseFillType(); SkClipStack stack; stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); SkRect bounds; SkClipStack::BoundsType boundsType; stack.getBounds(&bounds, &boundsType); REPORTER_ASSERT(reporter, SkClipStack::kInsideOut_BoundsType == boundsType); REPORTER_ASSERT(reporter, bounds == rect); } static void test_rect_replace(skiatest::Reporter* reporter) { SkRect rect = SkRect::MakeWH(100, 100); SkRect rect2 = SkRect::MakeXYWH(50, 50, 100, 100); SkRect bound; SkClipStack::BoundsType type; bool isIntersectionOfRects; // Adding a new rect with the replace operator should not increase // the stack depth. BW replacing BW. { SkClipStack stack; REPORTER_ASSERT(reporter, 0 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); } // Adding a new rect with the replace operator should not increase // the stack depth. AA replacing AA. { SkClipStack stack; REPORTER_ASSERT(reporter, 0 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); } // Adding a new rect with the replace operator should not increase // the stack depth. BW replacing AA replacing BW. { SkClipStack stack; REPORTER_ASSERT(reporter, 0 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); } // Make sure replace clip rects don't collapse too much. { SkClipStack stack; stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(rect2, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.save(); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 2 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, bound == rect); stack.restore(); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.save(); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 2 == count(stack)); stack.restore(); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.save(); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(rect2, SkMatrix::I(), kIntersect_SkClipOp, false); stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 2 == count(stack)); stack.restore(); REPORTER_ASSERT(reporter, 1 == count(stack)); } } // Simplified path-based version of test_rect_replace. static void test_path_replace(skiatest::Reporter* reporter) { SkRect rect = SkRect::MakeWH(100, 100); SkPath path; path.addCircle(50, 50, 50); // Replace operation doesn't grow the stack. { SkClipStack stack; REPORTER_ASSERT(reporter, 0 == count(stack)); stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); } // Replacing rect with path. { SkClipStack stack; stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); } } // Test out SkClipStack's merging of rect clips. In particular exercise // merging of aa vs. bw rects. static void test_rect_merging(skiatest::Reporter* reporter) { SkRect overlapLeft = SkRect::MakeLTRB(10, 10, 50, 50); SkRect overlapRight = SkRect::MakeLTRB(40, 40, 80, 80); SkRect nestedParent = SkRect::MakeLTRB(10, 10, 90, 90); SkRect nestedChild = SkRect::MakeLTRB(40, 40, 60, 60); SkRect bound; SkClipStack::BoundsType type; bool isIntersectionOfRects; // all bw overlapping - should merge { SkClipStack stack; stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, isIntersectionOfRects); } // all aa overlapping - should merge { SkClipStack stack; stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, true); stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, isIntersectionOfRects); } // mixed overlapping - should _not_ merge { SkClipStack stack; stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, true); stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, 2 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, !isIntersectionOfRects); } // mixed nested (bw inside aa) - should merge { SkClipStack stack; stack.clipRect(nestedParent, SkMatrix::I(), kReplace_SkClipOp, true); stack.clipRect(nestedChild, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, isIntersectionOfRects); } // mixed nested (aa inside bw) - should merge { SkClipStack stack; stack.clipRect(nestedParent, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(nestedChild, SkMatrix::I(), kIntersect_SkClipOp, true); REPORTER_ASSERT(reporter, 1 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, isIntersectionOfRects); } // reverse nested (aa inside bw) - should _not_ merge { SkClipStack stack; stack.clipRect(nestedChild, SkMatrix::I(), kReplace_SkClipOp, false); stack.clipRect(nestedParent, SkMatrix::I(), kIntersect_SkClipOp, true); REPORTER_ASSERT(reporter, 2 == count(stack)); stack.getBounds(&bound, &type, &isIntersectionOfRects); REPORTER_ASSERT(reporter, !isIntersectionOfRects); } } static void test_quickContains(skiatest::Reporter* reporter) { SkRect testRect = SkRect::MakeLTRB(10, 10, 40, 40); SkRect insideRect = SkRect::MakeLTRB(20, 20, 30, 30); SkRect intersectingRect = SkRect::MakeLTRB(25, 25, 50, 50); SkRect outsideRect = SkRect::MakeLTRB(0, 0, 50, 50); SkRect nonIntersectingRect = SkRect::MakeLTRB(100, 100, 110, 110); SkPath insideCircle; insideCircle.addCircle(25, 25, 5); SkPath intersectingCircle; intersectingCircle.addCircle(25, 40, 10); SkPath outsideCircle; outsideCircle.addCircle(25, 25, 50); SkPath nonIntersectingCircle; nonIntersectingCircle.addCircle(100, 100, 5); { SkClipStack stack; stack.clipRect(outsideRect, SkMatrix::I(), kDifference_SkClipOp, false); // return false because quickContains currently does not care for kDifference_SkClipOp REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } // Replace Op tests { SkClipStack stack; stack.clipRect(outsideRect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false); stack.save(); // To prevent in-place substitution by replace OP stack.clipRect(outsideRect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); stack.restore(); } { SkClipStack stack; stack.clipRect(outsideRect, SkMatrix::I(), kIntersect_SkClipOp, false); stack.save(); // To prevent in-place substitution by replace OP stack.clipRect(insideRect, SkMatrix::I(), kReplace_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); stack.restore(); } // Verify proper traversal of multi-element clip { SkClipStack stack; stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false); // Use a path for second clip to prevent in-place intersection stack.clipPath(outsideCircle, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } // Intersect Op tests with rectangles { SkClipStack stack; stack.clipRect(outsideRect, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipRect(intersectingRect, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipRect(nonIntersectingRect, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } // Intersect Op tests with circle paths { SkClipStack stack; stack.clipPath(outsideCircle, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipPath(insideCircle, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipPath(intersectingCircle, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; stack.clipPath(nonIntersectingCircle, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } // Intersect Op tests with inverse filled rectangles { SkClipStack stack; SkPath path; path.addRect(outsideRect); path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path; path.addRect(insideRect); path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path; path.addRect(intersectingRect); path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path; path.addRect(nonIntersectingRect); path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); } // Intersect Op tests with inverse filled circles { SkClipStack stack; SkPath path = outsideCircle; path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path = insideCircle; path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path = intersectingCircle; path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, false == stack.quickContains(testRect)); } { SkClipStack stack; SkPath path = nonIntersectingCircle; path.toggleInverseFillType(); stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false); REPORTER_ASSERT(reporter, true == stack.quickContains(testRect)); } } static void set_region_to_stack(const SkClipStack& stack, const SkIRect& bounds, SkRegion* region) { region->setRect(bounds); SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart); while (const SkClipStack::Element *element = iter.next()) { SkRegion elemRegion; SkRegion boundsRgn(bounds); SkPath path; switch (element->getDeviceSpaceType()) { case SkClipStack::Element::DeviceSpaceType::kEmpty: elemRegion.setEmpty(); break; default: element->asDeviceSpacePath(&path); elemRegion.setPath(path, boundsRgn); break; } region->op(elemRegion, (SkRegion::Op)element->getOp()); } } static void test_invfill_diff_bug(skiatest::Reporter* reporter) { SkClipStack stack; stack.clipRect({10, 10, 20, 20}, SkMatrix::I(), kIntersect_SkClipOp, false); SkPath path; path.addRect({30, 10, 40, 20}); path.setFillType(SkPathFillType::kInverseWinding); stack.clipPath(path, SkMatrix::I(), kDifference_SkClipOp, false); REPORTER_ASSERT(reporter, SkClipStack::kEmptyGenID == stack.getTopmostGenID()); SkRect stackBounds; SkClipStack::BoundsType stackBoundsType; stack.getBounds(&stackBounds, &stackBoundsType); REPORTER_ASSERT(reporter, stackBounds.isEmpty()); REPORTER_ASSERT(reporter, SkClipStack::kNormal_BoundsType == stackBoundsType); SkRegion region; set_region_to_stack(stack, {0, 0, 50, 30}, ®ion); REPORTER_ASSERT(reporter, region.isEmpty()); } /////////////////////////////////////////////////////////////////////////////////////////////////// // Functions that add a shape to the clip stack. The shape is computed from a rectangle. // AA is always disabled since the clip stack reducer can cause changes in aa rasterization of the // stack. A fractional edge repeated in different elements may be rasterized fewer times using the // reduced stack. typedef void (*AddElementFunc) (const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack, bool doAA); static void add_round_rect(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack, bool doAA) { SkScalar rx = rect.width() / 10; SkScalar ry = rect.height() / 20; if (invert) { SkPath path; path.addRoundRect(rect, rx, ry); path.setFillType(SkPathFillType::kInverseWinding); stack->clipPath(path, SkMatrix::I(), op, doAA); } else { SkRRect rrect; rrect.setRectXY(rect, rx, ry); stack->clipRRect(rrect, SkMatrix::I(), op, doAA); } }; static void add_rect(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack, bool doAA) { if (invert) { SkPath path; path.addRect(rect); path.setFillType(SkPathFillType::kInverseWinding); stack->clipPath(path, SkMatrix::I(), op, doAA); } else { stack->clipRect(rect, SkMatrix::I(), op, doAA); } }; static void add_oval(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack, bool doAA) { SkPath path; path.addOval(rect); if (invert) { path.setFillType(SkPathFillType::kInverseWinding); } stack->clipPath(path, SkMatrix::I(), op, doAA); }; static void add_shader(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack, bool doAA) { // invert, op, and doAA don't apply to shaders at the SkClipStack level; this is handled earlier // in the SkCanvas->SkDevice stack. Use rect to produce unique gradients, however. SkPoint corners[2] = { {rect.fLeft, rect.fTop}, {rect.fRight, rect.fBottom} }; SkColor colors[2] = { SK_ColorBLACK, SK_ColorTRANSPARENT }; auto gradient = SkGradientShader::MakeLinear(corners, colors, nullptr, 2, SkTileMode::kDecal); stack->clipShader(std::move(gradient)); } static void add_elem_to_stack(const SkClipStack::Element& element, SkClipStack* stack) { switch (element.getDeviceSpaceType()) { case SkClipStack::Element::DeviceSpaceType::kRect: stack->clipRect(element.getDeviceSpaceRect(), SkMatrix::I(), element.getOp(), element.isAA()); break; case SkClipStack::Element::DeviceSpaceType::kRRect: stack->clipRRect(element.getDeviceSpaceRRect(), SkMatrix::I(), element.getOp(), element.isAA()); break; case SkClipStack::Element::DeviceSpaceType::kPath: stack->clipPath(element.getDeviceSpacePath(), SkMatrix::I(), element.getOp(), element.isAA()); break; case SkClipStack::Element::DeviceSpaceType::kShader: SkDEBUGFAIL("Why did the reducer put this in the mask elements."); stack->clipShader(element.refShader()); break; case SkClipStack::Element::DeviceSpaceType::kEmpty: SkDEBUGFAIL("Why did the reducer produce an explicit empty."); stack->clipEmpty(); break; } } static void test_reduced_clip_stack(skiatest::Reporter* reporter, bool enableClipShader) { // We construct random clip stacks, reduce them, and then rasterize both versions to verify that // they are equal. // All the clip elements will be contained within these bounds. static const SkIRect kIBounds = SkIRect::MakeWH(100, 100); static const SkRect kBounds = SkRect::Make(kIBounds); enum { kNumTests = 250, kMinElemsPerTest = 1, kMaxElemsPerTest = 50, }; // min/max size of a clip element as a fraction of kBounds. static const SkScalar kMinElemSizeFrac = SK_Scalar1 / 5; static const SkScalar kMaxElemSizeFrac = SK_Scalar1; static const SkClipOp kOps[] = { kDifference_SkClipOp, kIntersect_SkClipOp, kUnion_SkClipOp, kXOR_SkClipOp, kReverseDifference_SkClipOp, kReplace_SkClipOp, }; // Replace operations short-circuit the optimizer. We want to make sure that we test this code // path a little bit but we don't want it to prevent us from testing many longer traversals in // the optimizer. static const int kReplaceDiv = 4 * kMaxElemsPerTest; // We want to test inverse fills. However, they are quite rare in practice so don't over do it. static const SkScalar kFractionInverted = SK_Scalar1 / kMaxElemsPerTest; static const SkScalar kFractionAntialiased = 0.25; static const AddElementFunc kElementFuncs[] = { add_rect, add_round_rect, add_oval, add_shader }; SkRandom r; for (int i = 0; i < kNumTests; ++i) { SkString testCase; testCase.printf("Iteration %d", i); // Randomly generate a clip stack. SkClipStack stack; int numElems = r.nextRangeU(kMinElemsPerTest, kMaxElemsPerTest); bool doAA = r.nextBiasedBool(kFractionAntialiased); for (int e = 0; e < numElems; ++e) { size_t opLimit = enableClipShader ? ((size_t) kIntersect_SkClipOp + 1) : SK_ARRAY_COUNT(kOps); SkClipOp op = kOps[r.nextULessThan(opLimit)]; if (op == kReplace_SkClipOp) { if (r.nextU() % kReplaceDiv) { --e; continue; } } // saves can change the clip stack behavior when an element is added. bool doSave = r.nextBool(); SkSize size = SkSize::Make( kBounds.width() * r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac), kBounds.height() * r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac)); SkPoint xy = {r.nextRangeScalar(kBounds.fLeft, kBounds.fRight - size.fWidth), r.nextRangeScalar(kBounds.fTop, kBounds.fBottom - size.fHeight)}; SkRect rect; if (doAA) { rect.setXYWH(xy.fX, xy.fY, size.fWidth, size.fHeight); if (GrClip::IsPixelAligned(rect)) { // Don't create an element that may accidentally become not antialiased. rect.outset(0.5f, 0.5f); } SkASSERT(!GrClip::IsPixelAligned(rect)); } else { rect.setXYWH(SkScalarFloorToScalar(xy.fX), SkScalarFloorToScalar(xy.fY), SkScalarCeilToScalar(size.fWidth), SkScalarCeilToScalar(size.fHeight)); } bool invert = r.nextBiasedBool(kFractionInverted); size_t functionLimit = SK_ARRAY_COUNT(kElementFuncs); if (!enableClipShader) { functionLimit--; } kElementFuncs[r.nextULessThan(functionLimit)](rect, invert, op, &stack, doAA); if (doSave) { stack.save(); } } sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); // Zero the memory we will new the GrReducedClip into. This ensures the elements gen ID // will be kInvalidGenID if left uninitialized. SkAlignedSTStorage<1, GrReducedClip> storage; memset(storage.get(), 0, sizeof(GrReducedClip)); static_assert(0 == SkClipStack::kInvalidGenID); // Get the reduced version of the stack. SkRect queryBounds = kBounds; queryBounds.outset(kBounds.width() / 2, kBounds.height() / 2); const GrReducedClip* reduced = new (storage.get()) GrReducedClip(stack, queryBounds, caps); REPORTER_ASSERT(reporter, reduced->maskElements().isEmpty() || SkClipStack::kInvalidGenID != reduced->maskGenID(), testCase.c_str()); if (!reduced->maskElements().isEmpty()) { REPORTER_ASSERT(reporter, reduced->hasScissor(), testCase.c_str()); SkRect stackBounds; SkClipStack::BoundsType stackBoundsType; stack.getBounds(&stackBounds, &stackBoundsType); REPORTER_ASSERT(reporter, reduced->maskRequiresAA() == doAA, testCase.c_str()); } // Build a new clip stack based on the reduced clip elements SkClipStack reducedStack; if (GrReducedClip::InitialState::kAllOut == reduced->initialState()) { // whether the result is bounded or not, the whole plane should start outside the clip. reducedStack.clipEmpty(); } for (ElementList::Iter iter(reduced->maskElements()); iter.get(); iter.next()) { add_elem_to_stack(*iter.get(), &reducedStack); } if (reduced->hasShader()) { REPORTER_ASSERT(reporter, enableClipShader); reducedStack.clipShader(reduced->shader()); } SkIRect scissor = reduced->hasScissor() ? reduced->scissor() : kIBounds; // GrReducedClipStack assumes that the final result is clipped to the returned bounds reducedStack.clipDevRect(scissor, kIntersect_SkClipOp); stack.clipDevRect(scissor, kIntersect_SkClipOp); // convert both the original stack and reduced stack to SkRegions and see if they're equal SkRegion region; set_region_to_stack(stack, scissor, ®ion); SkRegion reducedRegion; set_region_to_stack(reducedStack, scissor, &reducedRegion); REPORTER_ASSERT(reporter, region == reducedRegion, testCase.c_str()); reduced->~GrReducedClip(); } } #ifdef SK_BUILD_FOR_WIN #define SUPPRESS_VISIBILITY_WARNING #else #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) #endif static void test_reduced_clip_stack_genid(skiatest::Reporter* reporter) { { SkClipStack stack; stack.clipRect(SkRect::MakeXYWH(0, 0, 100, 100), SkMatrix::I(), kReplace_SkClipOp, true); stack.clipRect(SkRect::MakeXYWH(0, 0, SkScalar(50.3), SkScalar(50.3)), SkMatrix::I(), kReplace_SkClipOp, true); SkRect bounds = SkRect::MakeXYWH(0, 0, 100, 100); sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); SkAlignedSTStorage<1, GrReducedClip> storage; memset(storage.get(), 0, sizeof(GrReducedClip)); static_assert(0 == SkClipStack::kInvalidGenID); const GrReducedClip* reduced = new (storage.get()) GrReducedClip(stack, bounds, caps); REPORTER_ASSERT(reporter, reduced->maskElements().count() == 1); // Clips will be cached based on the generation id. Make sure the gen id is valid. REPORTER_ASSERT(reporter, SkClipStack::kInvalidGenID != reduced->maskGenID()); reduced->~GrReducedClip(); } { SkClipStack stack; // Create a clip with following 25.3, 25.3 boxes which are 25 apart: // A B // C D stack.clipRect(SkRect::MakeXYWH(0, 0, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(), kReplace_SkClipOp, true); uint32_t genIDA = stack.getTopmostGenID(); stack.clipRect(SkRect::MakeXYWH(50, 0, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(), kUnion_SkClipOp, true); uint32_t genIDB = stack.getTopmostGenID(); stack.clipRect(SkRect::MakeXYWH(0, 50, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(), kUnion_SkClipOp, true); uint32_t genIDC = stack.getTopmostGenID(); stack.clipRect(SkRect::MakeXYWH(50, 50, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(), kUnion_SkClipOp, true); uint32_t genIDD = stack.getTopmostGenID(); #define IXYWH SkIRect::MakeXYWH #define XYWH SkRect::MakeXYWH SkIRect stackBounds = IXYWH(0, 0, 76, 76); // The base test is to test each rect in two ways: // 1) The box dimensions. (Should reduce to "all in", no elements). // 2) A bit over the box dimensions. // In the case 2, test that the generation id is what is expected. // The rects are of fractional size so that case 2 never gets optimized to an empty element // list. // Not passing in tighter bounds is tested for consistency. static const struct SUPPRESS_VISIBILITY_WARNING { SkRect testBounds; int reducedClipCount; uint32_t reducedGenID; InitialState initialState; SkIRect clipIRect; // parameter. } testCases[] = { // Rect A. { XYWH(0, 0, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 0, 25, 25) }, { XYWH(0.1f, 0.1f, 25.1f, 25.1f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 0, 26, 26) }, { XYWH(0, 0, 27, 27), 1, genIDA, GrReducedClip::InitialState::kAllOut, IXYWH(0, 0, 26, 26)}, // Rect B. { XYWH(50, 0, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 0, 25, 25) }, { XYWH(50, 0, 25.3f, 25.3f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 0, 26, 26) }, { XYWH(50, 0, 27, 27), 1, genIDB, GrReducedClip::InitialState::kAllOut, IXYWH(50, 0, 26, 27) }, // Rect C. { XYWH(0, 50, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 50, 25, 25) }, { XYWH(0.2f, 50.1f, 25.1f, 25.2f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 50, 26, 26) }, { XYWH(0, 50, 27, 27), 1, genIDC, GrReducedClip::InitialState::kAllOut, IXYWH(0, 50, 27, 26) }, // Rect D. { XYWH(50, 50, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 50, 25, 25)}, { XYWH(50.3f, 50.3f, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 50, 26, 26)}, { XYWH(50, 50, 27, 27), 1, genIDD, GrReducedClip::InitialState::kAllOut, IXYWH(50, 50, 26, 26)}, // Other tests: { XYWH(0, 0, 100, 100), 4, genIDD, GrReducedClip::InitialState::kAllOut, stackBounds }, // Rect in the middle, touches none (so should not be drawn) { XYWH(26, 26, 24, 24), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllOut, SkIRect::MakeEmpty() }, // Rect in the middle, touches all the rects. GenID is the last rect. { XYWH(24, 24, 27, 27), 4, genIDD, GrReducedClip::InitialState::kAllOut, IXYWH(24, 24, 27, 27) }, }; #undef XYWH #undef IXYWH sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); for (size_t i = 0; i < SK_ARRAY_COUNT(testCases); ++i) { const GrReducedClip reduced(stack, testCases[i].testBounds, caps); REPORTER_ASSERT(reporter, reduced.maskElements().count() == testCases[i].reducedClipCount); if (reduced.maskElements().count()) { REPORTER_ASSERT(reporter, reduced.maskGenID() == testCases[i].reducedGenID); } REPORTER_ASSERT(reporter, reduced.initialState() == testCases[i].initialState); bool expectsScissor = !testCases[i].clipIRect.isEmpty(); REPORTER_ASSERT(reporter, expectsScissor == reduced.hasScissor()); if (expectsScissor) { REPORTER_ASSERT(reporter, reduced.scissor() == testCases[i].clipIRect); } } } } static void test_reduced_clip_stack_no_aa_crash(skiatest::Reporter* reporter) { SkClipStack stack; stack.clipDevRect(SkIRect::MakeXYWH(0, 0, 100, 100), kReplace_SkClipOp); stack.clipDevRect(SkIRect::MakeXYWH(0, 0, 50, 50), kReplace_SkClipOp); SkRect bounds = SkRect::MakeXYWH(0, 0, 100, 100); sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); // At the time, this would crash. const GrReducedClip reduced(stack, bounds, caps); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty()); } enum class ClipMethod { kSkipDraw, kIgnoreClip, kScissor, kAAElements }; static void test_aa_query(skiatest::Reporter* reporter, const SkString& testName, const SkClipStack& stack, const SkMatrix& queryXform, const SkRect& preXformQuery, ClipMethod expectedMethod, int numExpectedElems = 0) { sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); SkRect queryBounds; queryXform.mapRect(&queryBounds, preXformQuery); const GrReducedClip reduced(stack, queryBounds, caps); SkClipStack::BoundsType stackBoundsType; SkRect stackBounds; stack.getBounds(&stackBounds, &stackBoundsType); switch (expectedMethod) { case ClipMethod::kSkipDraw: SkASSERT(0 == numExpectedElems); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty(), testName.c_str()); REPORTER_ASSERT(reporter, GrReducedClip::InitialState::kAllOut == reduced.initialState(), testName.c_str()); return; case ClipMethod::kIgnoreClip: SkASSERT(0 == numExpectedElems); REPORTER_ASSERT( reporter, !reduced.hasScissor() || GrClip::IsInsideClip(reduced.scissor(), queryBounds), testName.c_str()); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty(), testName.c_str()); REPORTER_ASSERT(reporter, GrReducedClip::InitialState::kAllIn == reduced.initialState(), testName.c_str()); return; case ClipMethod::kScissor: { SkASSERT(SkClipStack::kNormal_BoundsType == stackBoundsType); SkASSERT(0 == numExpectedElems); SkIRect expectedScissor; stackBounds.round(&expectedScissor); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty(), testName.c_str()); REPORTER_ASSERT(reporter, reduced.hasScissor(), testName.c_str()); REPORTER_ASSERT(reporter, expectedScissor == reduced.scissor(), testName.c_str()); REPORTER_ASSERT(reporter, GrReducedClip::InitialState::kAllIn == reduced.initialState(), testName.c_str()); return; } case ClipMethod::kAAElements: { SkIRect expectedClipIBounds = GrClip::GetPixelIBounds(queryBounds); if (SkClipStack::kNormal_BoundsType == stackBoundsType) { SkAssertResult(expectedClipIBounds.intersect(GrClip::GetPixelIBounds(stackBounds))); } REPORTER_ASSERT(reporter, numExpectedElems == reduced.maskElements().count(), testName.c_str()); REPORTER_ASSERT(reporter, reduced.hasScissor(), testName.c_str()); REPORTER_ASSERT(reporter, expectedClipIBounds == reduced.scissor(), testName.c_str()); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty() || reduced.maskRequiresAA(), testName.c_str()); break; } } } static void test_reduced_clip_stack_aa(skiatest::Reporter* reporter) { constexpr SkScalar IL = 2, IT = 1, IR = 6, IB = 7; // Pixel aligned rect. constexpr SkScalar L = 2.2f, T = 1.7f, R = 5.8f, B = 7.3f; // Generic rect. constexpr SkScalar l = 3.3f, t = 2.8f, r = 4.7f, b = 6.2f; // Small rect contained in R. SkRect alignedRect = {IL, IT, IR, IB}; SkRect rect = {L, T, R, B}; SkRect innerRect = {l, t, r, b}; SkMatrix m; m.setIdentity(); constexpr SkScalar kMinScale = 2.0001f; constexpr SkScalar kMaxScale = 3; constexpr int kNumIters = 8; SkString name; SkRandom rand; for (int i = 0; i < kNumIters; ++i) { // Pixel-aligned rect (iior=true). name.printf("Pixel-aligned rect test, iter %i", i); SkClipStack stack; stack.clipRect(alignedRect, SkMatrix::I(), kIntersect_SkClipOp, true); test_aa_query(reporter, name, stack, m, {IL, IT, IR, IB}, ClipMethod::kIgnoreClip); test_aa_query(reporter, name, stack, m, {IL, IT-1, IR, IT}, ClipMethod::kSkipDraw); test_aa_query(reporter, name, stack, m, {IL, IT-2, IR, IB}, ClipMethod::kScissor); // Rect (iior=true). name.printf("Rect test, iter %i", i); stack.reset(); stack.clipRect(rect, SkMatrix::I(), kIntersect_SkClipOp, true); test_aa_query(reporter, name, stack, m, {L, T, R, B}, ClipMethod::kIgnoreClip); test_aa_query(reporter, name, stack, m, {L-.1f, T, L, B}, ClipMethod::kSkipDraw); test_aa_query(reporter, name, stack, m, {L-.1f, T, L+.1f, B}, ClipMethod::kAAElements, 1); // Difference rect (iior=false, inside-out bounds). name.printf("Difference rect test, iter %i", i); stack.reset(); stack.clipRect(rect, SkMatrix::I(), kDifference_SkClipOp, true); test_aa_query(reporter, name, stack, m, {L, T, R, B}, ClipMethod::kSkipDraw); test_aa_query(reporter, name, stack, m, {L, T-.1f, R, T}, ClipMethod::kIgnoreClip); test_aa_query(reporter, name, stack, m, {L, T-.1f, R, T+.1f}, ClipMethod::kAAElements, 1); // Complex clip (iior=false, normal bounds). name.printf("Complex clip test, iter %i", i); stack.reset(); stack.clipRect(rect, SkMatrix::I(), kIntersect_SkClipOp, true); stack.clipRect(innerRect, SkMatrix::I(), kXOR_SkClipOp, true); test_aa_query(reporter, name, stack, m, {l, t, r, b}, ClipMethod::kSkipDraw); test_aa_query(reporter, name, stack, m, {r-.1f, t, R, b}, ClipMethod::kAAElements, 1); test_aa_query(reporter, name, stack, m, {r-.1f, t, R+.1f, b}, ClipMethod::kAAElements, 2); test_aa_query(reporter, name, stack, m, {r, t, R+.1f, b}, ClipMethod::kAAElements, 1); test_aa_query(reporter, name, stack, m, {r, t, R, b}, ClipMethod::kIgnoreClip); test_aa_query(reporter, name, stack, m, {R, T, R+.1f, B}, ClipMethod::kSkipDraw); // Complex clip where outer rect is pixel aligned (iior=false, normal bounds). name.printf("Aligned Complex clip test, iter %i", i); stack.reset(); stack.clipRect(alignedRect, SkMatrix::I(), kIntersect_SkClipOp, true); stack.clipRect(innerRect, SkMatrix::I(), kXOR_SkClipOp, true); test_aa_query(reporter, name, stack, m, {l, t, r, b}, ClipMethod::kSkipDraw); test_aa_query(reporter, name, stack, m, {l, b-.1f, r, IB}, ClipMethod::kAAElements, 1); test_aa_query(reporter, name, stack, m, {l, b-.1f, r, IB+.1f}, ClipMethod::kAAElements, 1); test_aa_query(reporter, name, stack, m, {l, b, r, IB+.1f}, ClipMethod::kAAElements, 0); test_aa_query(reporter, name, stack, m, {l, b, r, IB}, ClipMethod::kIgnoreClip); test_aa_query(reporter, name, stack, m, {IL, IB, IR, IB+.1f}, ClipMethod::kSkipDraw); // Apply random transforms and try again. This ensures the clip stack reduction is hardened // against FP rounding error. SkScalar sx = rand.nextRangeScalar(kMinScale, kMaxScale); sx = SkScalarFloorToScalar(sx * alignedRect.width()) / alignedRect.width(); SkScalar sy = rand.nextRangeScalar(kMinScale, kMaxScale); sy = SkScalarFloorToScalar(sy * alignedRect.height()) / alignedRect.height(); SkScalar tx = SkScalarRoundToScalar(sx * alignedRect.x()) - sx * alignedRect.x(); SkScalar ty = SkScalarRoundToScalar(sy * alignedRect.y()) - sy * alignedRect.y(); SkMatrix xform = SkMatrix::Scale(sx, sy); xform.postTranslate(tx, ty); xform.mapRect(&alignedRect); xform.mapRect(&rect); xform.mapRect(&innerRect); m.postConcat(xform); } } static void test_tiny_query_bounds_assertion_bug(skiatest::Reporter* reporter) { // https://bugs.chromium.org/p/skia/issues/detail?id=5990 const SkRect clipBounds = SkRect::MakeXYWH(1.5f, 100, 1000, 1000); SkClipStack rectStack; rectStack.clipRect(clipBounds, SkMatrix::I(), kIntersect_SkClipOp, true); SkPath clipPath; clipPath.moveTo(clipBounds.left(), clipBounds.top()); clipPath.quadTo(clipBounds.right(), clipBounds.top(), clipBounds.right(), clipBounds.bottom()); clipPath.quadTo(clipBounds.left(), clipBounds.bottom(), clipBounds.left(), clipBounds.top()); SkClipStack pathStack; pathStack.clipPath(clipPath, SkMatrix::I(), kIntersect_SkClipOp, true); sk_sp context = GrDirectContext::MakeMock(nullptr); const GrCaps* caps = context->priv().caps(); for (const SkClipStack& stack : {rectStack, pathStack}) { for (SkRect queryBounds : {SkRect::MakeXYWH(53, 60, GrClip::kBoundsTolerance, 1000), SkRect::MakeXYWH(53, 60, GrClip::kBoundsTolerance/2, 1000), SkRect::MakeXYWH(53, 160, 1000, GrClip::kBoundsTolerance), SkRect::MakeXYWH(53, 160, 1000, GrClip::kBoundsTolerance/2)}) { const GrReducedClip reduced(stack, queryBounds, caps); REPORTER_ASSERT(reporter, !reduced.hasScissor()); REPORTER_ASSERT(reporter, reduced.maskElements().isEmpty()); REPORTER_ASSERT(reporter, GrReducedClip::InitialState::kAllOut == reduced.initialState()); } } } static void test_is_rrect_deep_rect_stack(skiatest::Reporter* reporter) { static constexpr SkRect kTargetBounds = SkRect::MakeWH(1000, 500); // All antialiased or all not antialiased. for (bool aa : {false, true}) { SkClipStack stack; for (int i = 0; i <= 100; ++i) { stack.save(); stack.clipRect(SkRect::MakeLTRB(i, 0.5, kTargetBounds.width(), kTargetBounds.height()), SkMatrix::I(), SkClipOp::kIntersect, aa); } SkRRect rrect; bool isAA; SkRRect expected = SkRRect::MakeRect( SkRect::MakeLTRB(100, 0.5, kTargetBounds.width(), kTargetBounds.height())); if (stack.isRRect(kTargetBounds, &rrect, &isAA)) { REPORTER_ASSERT(reporter, rrect == expected); REPORTER_ASSERT(reporter, aa == isAA); } else { ERRORF(reporter, "Expected to be an rrect."); } } // Mixed AA and non-AA without simple containment. SkClipStack stack; for (int i = 0; i <= 100; ++i) { bool aa = i & 0b1; int j = 100 - i; stack.save(); stack.clipRect(SkRect::MakeLTRB(i, j + 0.5, kTargetBounds.width(), kTargetBounds.height()), SkMatrix::I(), SkClipOp::kIntersect, aa); } SkRRect rrect; bool isAA; REPORTER_ASSERT(reporter, !stack.isRRect(kTargetBounds, &rrect, &isAA)); } DEF_TEST(ClipStack, reporter) { SkClipStack stack; REPORTER_ASSERT(reporter, 0 == stack.getSaveCount()); assert_count(reporter, stack, 0); static const SkIRect gRects[] = { { 0, 0, 100, 100 }, { 25, 25, 125, 125 }, { 0, 0, 1000, 1000 }, { 0, 0, 75, 75 } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) { stack.clipDevRect(gRects[i], kIntersect_SkClipOp); } // all of the above rects should have been intersected, leaving only 1 rect SkClipStack::B2TIter iter(stack); const SkClipStack::Element* element = iter.next(); SkRect answer; answer.setLTRB(25, 25, 75, 75); REPORTER_ASSERT(reporter, element); REPORTER_ASSERT(reporter, SkClipStack::Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()); REPORTER_ASSERT(reporter, kIntersect_SkClipOp == element->getOp()); REPORTER_ASSERT(reporter, element->getDeviceSpaceRect() == answer); // now check that we only had one in our iterator REPORTER_ASSERT(reporter, !iter.next()); stack.reset(); REPORTER_ASSERT(reporter, 0 == stack.getSaveCount()); assert_count(reporter, stack, 0); test_assign_and_comparison(reporter); test_iterators(reporter); test_bounds(reporter, SkClipStack::Element::DeviceSpaceType::kRect); test_bounds(reporter, SkClipStack::Element::DeviceSpaceType::kRRect); test_bounds(reporter, SkClipStack::Element::DeviceSpaceType::kPath); test_isWideOpen(reporter); test_rect_merging(reporter); test_rect_replace(reporter); test_rect_inverse_fill(reporter); test_path_replace(reporter); test_quickContains(reporter); test_invfill_diff_bug(reporter); test_reduced_clip_stack(reporter, /* clipShader */ false); test_reduced_clip_stack(reporter, /* clipShader */ true); test_reduced_clip_stack_genid(reporter); test_reduced_clip_stack_no_aa_crash(reporter); test_reduced_clip_stack_aa(reporter); test_tiny_query_bounds_assertion_bug(reporter); test_is_rrect_deep_rect_stack(reporter); } ////////////////////////////////////////////////////////////////////////////// sk_sp GrClipStackClip::testingOnly_createClipMask( GrRecordingContext* context) const { const GrReducedClip reducedClip(*fStack, SkRect::MakeWH(512, 512), nullptr); return this->createSoftwareClipMask(context, reducedClip, nullptr).asTextureProxyRef(); } // Verify that clip masks are freed up when the clip state that generated them goes away. DEF_GPUTEST_FOR_ALL_CONTEXTS(ClipMaskCache, reporter, ctxInfo) { // This test uses resource key tags which only function in debug builds. #ifdef SK_DEBUG auto context = ctxInfo.directContext(); SkClipStack stack; SkPath path; path.addCircle(10, 10, 8); path.addCircle(15, 15, 8); path.setFillType(SkPathFillType::kEvenOdd); SkIRect stackBounds = path.getBounds().roundOut(); static const char* kTag = GrClipStackClip::kMaskTestTag; GrResourceCache* cache = context->priv().getResourceCache(); static constexpr int kN = 5; for (int i = 0; i < kN; ++i) { SkMatrix m; m.setTranslate(0.5, 0.5); stack.save(); stack.clipPath(path, m, SkClipOp::kIntersect, true); sk_sp mask = GrClipStackClip(stackBounds.size(), &stack).testingOnly_createClipMask(context); // TODO: Make `instantiate` work for lazy proxies. if (mask->isLazy()) { mask->priv().doLazyInstantiation(context->priv().resourceProvider()); } else { mask->instantiate(context->priv().resourceProvider()); } GrTexture* tex = mask->peekTexture(); REPORTER_ASSERT(reporter, 0 == strcmp(tex->getUniqueKey().tag(), kTag)); // Make sure mask isn't pinned in cache. mask.reset(nullptr); context->flushAndSubmit(); REPORTER_ASSERT(reporter, i + 1 == cache->countUniqueKeysWithTag(kTag)); } for (int i = 0; i < kN; ++i) { stack.restore(); cache->purgeAsNeeded(); REPORTER_ASSERT(reporter, kN - (i + 1) == cache->countUniqueKeysWithTag(kTag)); } #endif }