/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #define SK_OPTS_NS skslc_standalone #include "include/core/SkGraphics.h" #include "include/core/SkStream.h" #include "include/private/SkStringView.h" #include "src/core/SkCpu.h" #include "src/core/SkOpts.h" #include "src/opts/SkChecksum_opts.h" #include "src/opts/SkVM_opts.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLFileOutputStream.h" #include "src/sksl/SkSLStringStream.h" #include "src/sksl/SkSLUtil.h" #include "src/sksl/codegen/SkSLPipelineStageCodeGenerator.h" #include "src/sksl/codegen/SkSLVMCodeGenerator.h" #include "src/sksl/ir/SkSLUnresolvedFunction.h" #include "src/sksl/ir/SkSLVarDeclarations.h" #include "src/sksl/tracing/SkVMDebugTrace.h" #include "src/utils/SkShaderUtils.h" #include "src/utils/SkVMVisualizer.h" #include "spirv-tools/libspirv.hpp" #include #include #include #include #include extern bool gSkVMAllowJIT; void SkDebugf(const char format[], ...) { va_list args; va_start(args, format); vfprintf(stderr, format, args); va_end(args); } namespace SkOpts { decltype(hash_fn) hash_fn = skslc_standalone::hash_fn; decltype(interpret_skvm) interpret_skvm = skslc_standalone::interpret_skvm; } enum class ResultCode { kSuccess = 0, kCompileError = 1, kInputError = 2, kOutputError = 3, kConfigurationError = 4, }; static std::unique_ptr as_SkWStream(SkSL::OutputStream& s) { struct Adapter : public SkWStream { public: Adapter(SkSL::OutputStream& out) : fOut(out), fBytesWritten(0) {} bool write(const void* buffer, size_t size) override { fOut.write(buffer, size); fBytesWritten += size; return true; } void flush() override {} size_t bytesWritten() const override { return fBytesWritten; } private: SkSL::OutputStream& fOut; size_t fBytesWritten; }; return std::make_unique(s); } static bool consume_suffix(std::string* str, const char suffix[]) { if (!skstd::ends_with(*str, suffix)) { return false; } str->resize(str->length() - strlen(suffix)); return true; } // Given a string containing an SkSL program, searches for a #pragma settings comment, like so: // /*#pragma settings Default Sharpen*/ // The passed-in Settings object will be updated accordingly. Any number of options can be provided. static bool detect_shader_settings(const std::string& text, SkSL::Program::Settings* settings, const SkSL::ShaderCaps** caps, std::unique_ptr* debugTrace) { using Factory = SkSL::ShaderCapsFactory; // Find a matching comment and isolate the name portion. static constexpr char kPragmaSettings[] = "/*#pragma settings "; const char* settingsPtr = strstr(text.c_str(), kPragmaSettings); if (settingsPtr != nullptr) { // Subtract one here in order to preserve the leading space, which is necessary to allow // consumeSuffix to find the first item. settingsPtr += strlen(kPragmaSettings) - 1; const char* settingsEnd = strstr(settingsPtr, "*/"); if (settingsEnd != nullptr) { std::string settingsText{settingsPtr, size_t(settingsEnd - settingsPtr)}; // Apply settings as requested. Since they can come in any order, repeat until we've // consumed them all. for (;;) { const size_t startingLength = settingsText.length(); if (consume_suffix(&settingsText, " AddAndTrueToLoopCondition")) { static auto s_addAndTrueCaps = Factory::AddAndTrueToLoopCondition(); *caps = s_addAndTrueCaps.get(); } if (consume_suffix(&settingsText, " CannotUseFractForNegativeValues")) { static auto s_negativeFractCaps = Factory::CannotUseFractForNegativeValues(); *caps = s_negativeFractCaps.get(); } if (consume_suffix(&settingsText, " CannotUseFragCoord")) { static auto s_noFragCoordCaps = Factory::CannotUseFragCoord(); *caps = s_noFragCoordCaps.get(); } if (consume_suffix(&settingsText, " CannotUseMinAndAbsTogether")) { static auto s_minAbsCaps = Factory::CannotUseMinAndAbsTogether(); *caps = s_minAbsCaps.get(); } if (consume_suffix(&settingsText, " Default")) { static auto s_defaultCaps = Factory::Default(); *caps = s_defaultCaps.get(); } if (consume_suffix(&settingsText, " EmulateAbsIntFunction")) { static auto s_emulateAbsIntCaps = Factory::EmulateAbsIntFunction(); *caps = s_emulateAbsIntCaps.get(); } if (consume_suffix(&settingsText, " FramebufferFetchSupport")) { static auto s_fbFetchSupport = Factory::FramebufferFetchSupport(); *caps = s_fbFetchSupport.get(); } if (consume_suffix(&settingsText, " IncompleteShortIntPrecision")) { static auto s_incompleteShortIntCaps = Factory::IncompleteShortIntPrecision(); *caps = s_incompleteShortIntCaps.get(); } if (consume_suffix(&settingsText, " MustGuardDivisionEvenAfterExplicitZeroCheck")) { static auto s_div0Caps = Factory::MustGuardDivisionEvenAfterExplicitZeroCheck(); *caps = s_div0Caps.get(); } if (consume_suffix(&settingsText, " MustForceNegatedAtanParamToFloat")) { static auto s_negativeAtanCaps = Factory::MustForceNegatedAtanParamToFloat(); *caps = s_negativeAtanCaps.get(); } if (consume_suffix(&settingsText, " MustForceNegatedLdexpParamToMultiply")) { static auto s_negativeLdexpCaps = Factory::MustForceNegatedLdexpParamToMultiply(); *caps = s_negativeLdexpCaps.get(); } if (consume_suffix(&settingsText, " RemovePowWithConstantExponent")) { static auto s_powCaps = Factory::RemovePowWithConstantExponent(); *caps = s_powCaps.get(); } if (consume_suffix(&settingsText, " RewriteDoWhileLoops")) { static auto s_rewriteLoopCaps = Factory::RewriteDoWhileLoops(); *caps = s_rewriteLoopCaps.get(); } if (consume_suffix(&settingsText, " RewriteSwitchStatements")) { static auto s_rewriteSwitchCaps = Factory::RewriteSwitchStatements(); *caps = s_rewriteSwitchCaps.get(); } if (consume_suffix(&settingsText, " RewriteMatrixVectorMultiply")) { static auto s_rewriteMatVecMulCaps = Factory::RewriteMatrixVectorMultiply(); *caps = s_rewriteMatVecMulCaps.get(); } if (consume_suffix(&settingsText, " RewriteMatrixComparisons")) { static auto s_rewriteMatrixComparisons = Factory::RewriteMatrixComparisons(); *caps = s_rewriteMatrixComparisons.get(); } if (consume_suffix(&settingsText, " ShaderDerivativeExtensionString")) { static auto s_derivativeCaps = Factory::ShaderDerivativeExtensionString(); *caps = s_derivativeCaps.get(); } if (consume_suffix(&settingsText, " UnfoldShortCircuitAsTernary")) { static auto s_ternaryCaps = Factory::UnfoldShortCircuitAsTernary(); *caps = s_ternaryCaps.get(); } if (consume_suffix(&settingsText, " UsesPrecisionModifiers")) { static auto s_precisionCaps = Factory::UsesPrecisionModifiers(); *caps = s_precisionCaps.get(); } if (consume_suffix(&settingsText, " Version110")) { static auto s_version110Caps = Factory::Version110(); *caps = s_version110Caps.get(); } if (consume_suffix(&settingsText, " Version450Core")) { static auto s_version450CoreCaps = Factory::Version450Core(); *caps = s_version450CoreCaps.get(); } if (consume_suffix(&settingsText, " AllowNarrowingConversions")) { settings->fAllowNarrowingConversions = true; } if (consume_suffix(&settingsText, " ForceHighPrecision")) { settings->fForceHighPrecision = true; } if (consume_suffix(&settingsText, " NoInline")) { settings->fInlineThreshold = 0; } if (consume_suffix(&settingsText, " NoOptimize")) { settings->fOptimize = false; settings->fInlineThreshold = 0; } if (consume_suffix(&settingsText, " NoRTFlip")) { settings->fForceNoRTFlip = true; } if (consume_suffix(&settingsText, " NoTraceVarInSkVMDebugTrace")) { settings->fAllowTraceVarInSkVMDebugTrace = false; } if (consume_suffix(&settingsText, " InlineThresholdMax")) { settings->fInlineThreshold = INT_MAX; } if (consume_suffix(&settingsText, " Sharpen")) { settings->fSharpenTextures = true; } if (consume_suffix(&settingsText, " SkVMDebugTrace")) { settings->fOptimize = false; *debugTrace = std::make_unique(); } if (settingsText.empty()) { break; } if (settingsText.length() == startingLength) { printf("Unrecognized #pragma settings: %s\n", settingsText.c_str()); return false; } } } } return true; } /** * Displays a usage banner; used when the command line arguments don't make sense. */ static void show_usage() { printf("usage: skslc \n" " skslc \n" "\n" "Allowed flags:\n" "--settings: honor embedded /*#pragma settings*/ comments.\n" "--nosettings: ignore /*#pragma settings*/ comments\n"); } static bool set_flag(std::optional* flag, const char* name, bool value) { if (flag->has_value()) { printf("%s flag was specified multiple times\n", name); return false; } *flag = value; return true; } /** * Handle a single input. */ ResultCode processCommand(const std::vector& args) { std::optional honorSettings; std::vector paths; for (size_t i = 1; i < args.size(); ++i) { const std::string& arg = args[i]; if (arg == "--settings") { if (!set_flag(&honorSettings, "settings", true)) { return ResultCode::kInputError; } } else if (arg == "--nosettings") { if (!set_flag(&honorSettings, "settings", false)) { return ResultCode::kInputError; } } else if (!skstd::starts_with(arg, "--")) { paths.push_back(arg); } else { show_usage(); return ResultCode::kInputError; } } if (paths.size() != 2) { show_usage(); return ResultCode::kInputError; } if (!honorSettings.has_value()) { honorSettings = true; } const std::string& inputPath = paths[0]; const std::string& outputPath = paths[1]; SkSL::ProgramKind kind; if (skstd::ends_with(inputPath, ".vert")) { kind = SkSL::ProgramKind::kVertex; } else if (skstd::ends_with(inputPath, ".frag") || skstd::ends_with(inputPath, ".sksl")) { kind = SkSL::ProgramKind::kFragment; } else if (skstd::ends_with(inputPath, ".rtb")) { kind = SkSL::ProgramKind::kRuntimeBlender; } else if (skstd::ends_with(inputPath, ".rtcf")) { kind = SkSL::ProgramKind::kRuntimeColorFilter; } else if (skstd::ends_with(inputPath, ".rts")) { kind = SkSL::ProgramKind::kRuntimeShader; } else { printf("input filename must end in '.vert', '.frag', '.rtb', '.rtcf', " "'.rts' or '.sksl'\n"); return ResultCode::kInputError; } std::ifstream in(inputPath); std::string text((std::istreambuf_iterator(in)), std::istreambuf_iterator()); if (in.rdstate()) { printf("error reading '%s'\n", inputPath.c_str()); return ResultCode::kInputError; } SkSL::Program::Settings settings; auto standaloneCaps = SkSL::ShaderCapsFactory::Standalone(); const SkSL::ShaderCaps* caps = standaloneCaps.get(); std::unique_ptr debugTrace; if (*honorSettings) { if (!detect_shader_settings(text, &settings, &caps, &debugTrace)) { return ResultCode::kInputError; } } // This tells the compiler where the rt-flip uniform will live should it be required. For // testing purposes we don't care where that is, but the compiler will report an error if we // leave them at their default invalid values, or if the offset overlaps another uniform. settings.fRTFlipOffset = 16384; settings.fRTFlipSet = 0; settings.fRTFlipBinding = 0; auto emitCompileError = [&](SkSL::FileOutputStream& out, const char* errorText) { // Overwrite the compiler output, if any, with an error message. out.close(); SkSL::FileOutputStream errorStream(outputPath.c_str()); errorStream.writeText("### Compilation failed:\n\n"); errorStream.writeText(errorText); errorStream.close(); // Also emit the error directly to stdout. puts(errorText); }; auto compileProgram = [&](const auto& writeFn) -> ResultCode { SkSL::FileOutputStream out(outputPath.c_str()); SkSL::Compiler compiler(caps); if (!out.isValid()) { printf("error writing '%s'\n", outputPath.c_str()); return ResultCode::kOutputError; } std::unique_ptr program = compiler.convertProgram(kind, text, settings); if (!program || !writeFn(compiler, *program, out)) { emitCompileError(out, compiler.errorText().c_str()); return ResultCode::kCompileError; } if (!out.close()) { printf("error writing '%s'\n", outputPath.c_str()); return ResultCode::kOutputError; } return ResultCode::kSuccess; }; auto compileProgramForSkVM = [&](const auto& writeFn) -> ResultCode { if (kind == SkSL::ProgramKind::kVertex) { printf("%s: SkVM does not support vertex programs\n", outputPath.c_str()); return ResultCode::kOutputError; } if (kind == SkSL::ProgramKind::kFragment) { // Handle .sksl and .frag programs as runtime shaders. kind = SkSL::ProgramKind::kRuntimeShader; } return compileProgram(writeFn); }; if (skstd::ends_with(outputPath, ".spirv")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { return compiler.toSPIRV(program, out); }); } else if (skstd::ends_with(outputPath, ".asm.frag") || skstd::ends_with(outputPath, ".asm.vert")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { // Compile program to SPIR-V assembly in a string-stream. SkSL::StringStream assembly; if (!compiler.toSPIRV(program, assembly)) { return false; } // Convert the string-stream to a SPIR-V disassembly. spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0); const std::string& spirv(assembly.str()); std::string disassembly; if (!tools.Disassemble((const uint32_t*)spirv.data(), spirv.size() / 4, &disassembly)) { return false; } // Finally, write the disassembly to our output stream. out.write(disassembly.data(), disassembly.size()); return true; }); } else if (skstd::ends_with(outputPath, ".glsl")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { return compiler.toGLSL(program, out); }); } else if (skstd::ends_with(outputPath, ".metal")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { return compiler.toMetal(program, out); }); } else if (skstd::ends_with(outputPath, ".hlsl")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { return compiler.toHLSL(program, out); }); } else if (skstd::ends_with(outputPath, ".wgsl")) { return compileProgram( [](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) { return compiler.toWGSL(program, out); }); } else if (skstd::ends_with(outputPath, ".skvm")) { return compileProgramForSkVM( [&](SkSL::Compiler&, SkSL::Program& program, SkSL::OutputStream& out) { skvm::Builder builder{skvm::Features{}}; if (!SkSL::testingOnly_ProgramToSkVMShader(program, &builder, debugTrace.get())) { return false; } std::unique_ptr redirect = as_SkWStream(out); if (debugTrace) { debugTrace->dump(redirect.get()); } builder.done().dump(redirect.get()); return true; }); } else if (skstd::ends_with(outputPath, ".stage")) { return compileProgram( [](SkSL::Compiler&, SkSL::Program& program, SkSL::OutputStream& out) { class Callbacks : public SkSL::PipelineStage::Callbacks { public: std::string getMangledName(const char* name) override { return std::string(name) + "_0"; } std::string declareUniform(const SkSL::VarDeclaration* decl) override { fOutput += decl->description(); return std::string(decl->var().name()); } void defineFunction(const char* decl, const char* body, bool /*isMain*/) override { fOutput += std::string(decl) + "{" + body + "}"; } void declareFunction(const char* decl) override { fOutput += std::string(decl) + ";"; } void defineStruct(const char* definition) override { fOutput += definition; } void declareGlobal(const char* declaration) override { fOutput += declaration; } std::string sampleShader(int index, std::string coords) override { return "child_" + std::to_string(index) + ".eval(" + coords + ")"; } std::string sampleColorFilter(int index, std::string color) override { return "child_" + std::to_string(index) + ".eval(" + color + ")"; } std::string sampleBlender(int index, std::string src, std::string dst) override { return "child_" + std::to_string(index) + ".eval(" + src + ", " + dst + ")"; } std::string toLinearSrgb(std::string color) override { return "toLinearSrgb(" + color + ")"; } std::string fromLinearSrgb(std::string color) override { return "fromLinearSrgb(" + color + ")"; } std::string fOutput; }; // The .stage output looks almost like valid SkSL, but not quite. // The PipelineStageGenerator bridges the gap between the SkSL in `program`, // and the C++ FP builder API (see GrSkSLFP). In that API, children don't need // to be declared (so they don't emit declarations here). Children are sampled // by index, not name - so all children here are just "child_N". // The input color and coords have names in the original SkSL (as parameters to // main), but those are ignored here. References to those variables become // "_coords" and "_inColor". At runtime, those variable names are irrelevant // when the new SkSL is emitted inside the FP - references to those variables // are replaced with strings from EmitArgs, and might be varyings or differently // named parameters. Callbacks callbacks; SkSL::PipelineStage::ConvertProgram(program, "_coords", "_inColor", "_canvasColor", &callbacks); out.writeString(SkShaderUtils::PrettyPrint(callbacks.fOutput)); return true; }); } else if (skstd::ends_with(outputPath, ".html")) { settings.fAllowTraceVarInSkVMDebugTrace = false; SkCpu::CacheRuntimeFeatures(); gSkVMAllowJIT = true; return compileProgramForSkVM( [&](SkSL::Compiler&, SkSL::Program& program, SkSL::OutputStream& out) { if (!debugTrace) { debugTrace = std::make_unique(); debugTrace->setSource(text.c_str()); } auto visualizer = std::make_unique(debugTrace.get()); skvm::Builder builder(skvm::Features{}, /*createDuplicates=*/true); if (!SkSL::testingOnly_ProgramToSkVMShader(program, &builder, debugTrace.get())) { return false; } std::unique_ptr redirect = as_SkWStream(out); skvm::Program p = builder.done( /*debug_name=*/nullptr, /*allow_jit=*/true, std::move(visualizer)); #if defined(SKVM_JIT) SkDynamicMemoryWStream asmFile; p.disassemble(&asmFile); auto dumpData = asmFile.detachAsData(); std::string dumpString(static_cast(dumpData->data()),dumpData->size()); p.visualize(redirect.get(), dumpString.c_str()); #else p.visualize(redirect.get(), nullptr); #endif return true; }); } else { printf("expected output path to end with one of: .glsl, .html, .metal, .hlsl, .wgsl, " ".spirv, .asm.vert, .asm.frag, .skvm, .stage (got '%s')\n", outputPath.c_str()); return ResultCode::kConfigurationError; } return ResultCode::kSuccess; } /** * Processes multiple inputs in a single invocation of skslc. */ ResultCode processWorklist(const char* worklistPath) { std::string inputPath(worklistPath); if (!skstd::ends_with(inputPath, ".worklist")) { printf("expected .worklist file, found: %s\n\n", worklistPath); show_usage(); return ResultCode::kConfigurationError; } // The worklist contains one line per argument to pass to skslc. When a blank line is reached, // those arguments will be passed to `processCommand`. auto resultCode = ResultCode::kSuccess; std::vector args = {"skslc"}; std::ifstream in(worklistPath); for (std::string line; std::getline(in, line); ) { if (in.rdstate()) { printf("error reading '%s'\n", worklistPath); return ResultCode::kInputError; } if (!line.empty()) { // We found an argument. Remember it. args.push_back(std::move(line)); } else { // We found a blank line. If we have any arguments stored up, process them as a command. if (!args.empty()) { ResultCode outcome = processCommand(args); resultCode = std::max(resultCode, outcome); // Clear every argument except the first ("skslc"). args.resize(1); } } } // If the worklist ended with a list of arguments but no blank line, process those now. if (args.size() > 1) { ResultCode outcome = processCommand(args); resultCode = std::max(resultCode, outcome); } // Return the "worst" status we encountered. For our purposes, compilation errors are the least // serious, because they are expected to occur in unit tests. Other types of errors are not // expected at all during a build. return resultCode; } int main(int argc, const char** argv) { if (argc == 2) { // Worklists are the only two-argument case for skslc, and we don't intend to support // nested worklists, so we can process them here. return (int)processWorklist(argv[1]); } else { // Process non-worklist inputs. std::vector args; for (int index=0; index