/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "samplecode/Sample.h" #include "include/core/SkCanvas.h" #include "include/core/SkFont.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include // Math constants are not always defined. #ifndef M_PI #define M_PI 3.14159265358979323846264338327950288 #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880168872420969808 #endif constexpr static int kCenterX = 300; constexpr static int kCenterY = 325; constexpr static int kRadius = 250; // This sample fits a cubic to the arc between two interactive points on a circle. It also finds the // T-coordinate of max error, and outputs it and its value in pixels. (It turns out that max error // always occurs at T=0.21132486540519.) // // Press 'E' to iteratively cut the arc in half and report the improvement in max error after each // halving. (It turns out that max error improves by exactly 64x on every halving.) class SampleFitCubicToCircle : public Sample { SkString name() override { return SkString("FitCubicToCircle"); } void onOnceBeforeDraw() override { this->fitCubic(); } void fitCubic(); void onDrawContent(SkCanvas*) override; Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override; bool onClick(Sample::Click*) override; bool onChar(SkUnichar) override; // Coordinates of two points on the unit circle. These are the two endpoints of the arc we fit. double fEndptsX[2] = {0, 1}; double fEndptsY[2] = {-1, 0}; // Fitted cubic and info, set by fitCubic(). double fControlLength; // Length of (p1 - p0) and/or (p3 - p2) in unit circle space. double fMaxErrorT; // T value where the cubic diverges most from the true arc. std::array fCubicX; // Screen space cubic control points. std::array fCubicY; double fMaxError; // Max error (in pixels) between the cubic and the screen-space arc. double fTheta; // Angle of the arc. This is only used for informational purposes. SkTArray fInfoStrings; class Click; }; // Fits a cubic to an arc on the unit circle with endpoints (x0, y0) and (x1, y1). Using the // following 3 constraints, we arrive at the formula used in the method: // // 1) The endpoints and tangent directions at the endpoints must match the arc. // 2) The cubic must be symmetric (i.e., length(p1 - p0) == length(p3 - p2)). // 3) The height of the cubic must match the height of the arc. // // Returns the "control length", or length of (p1 - p0) and/or (p3 - p2). static float fit_cubic_to_unit_circle(double x0, double y0, double x1, double y1, std::array* X, std::array* Y) { constexpr static double kM = -4.0/3; constexpr static double kA = 4*M_SQRT2/3; double d = x0*x1 + y0*y1; double c = (std::sqrt(1 + d) * kM + kA) / std::sqrt(1 - d); *X = {x0, x0 - y0*c, x1 + y1*c, x1}; *Y = {y0, y0 + x0*c, y1 - x1*c, y1}; return c; } static double lerp(double x, double y, double T) { return x + T*(y - x); } // Evaluates the cubic and 1st and 2nd derivatives at T. static std::tuple eval_cubic(double x[], double T) { // Use De Casteljau's algorithm for better accuracy and stability. double ab = lerp(x[0], x[1], T); double bc = lerp(x[1], x[2], T); double cd = lerp(x[2], x[3], T); double abc = lerp(ab, bc, T); double bcd = lerp(bc, cd, T); double abcd = lerp(abc, bcd, T); return {abcd, 3 * (bcd - abc) /*1st derivative.*/, 6 * (cd - 2*bc + ab) /*2nd derivative.*/}; } // Uses newton-raphson convergence to find the point where the provided cubic diverges most from the // unit circle. i.e., the point where the derivative of error == 0. For error we use: // // error = x^2 + y^2 - 1 // error' = 2xx' + 2yy' // error'' = 2xx'' + 2yy'' + 2x'^2 + 2y'^2 // double find_max_error_T(double cubicX[4], double cubicY[4]) { constexpr static double kInitialT = .25; double T = kInitialT; for (int i = 0; i < 64; ++i) { auto [x, dx, ddx] = eval_cubic(cubicX, T); auto [y, dy, ddy] = eval_cubic(cubicY, T); double dError = 2*(x*dx + y*dy); double ddError = 2*(x*ddx + y*ddy + dx*dx + dy*dy); T -= dError / ddError; } return T; } void SampleFitCubicToCircle::fitCubic() { fInfoStrings.reset(); std::array X, Y; // "Control length" is the length of (p1 - p0) and/or (p3 - p2) in unit circle space. fControlLength = fit_cubic_to_unit_circle(fEndptsX[0], fEndptsY[0], fEndptsX[1], fEndptsY[1], &X, &Y); fInfoStrings.push_back().printf("control length=%0.14f", fControlLength); fMaxErrorT = find_max_error_T(X.data(), Y.data()); fInfoStrings.push_back().printf("max error T=%0.14f", fMaxErrorT); for (int i = 0; i < 4; ++i) { fCubicX[i] = X[i] * kRadius + kCenterX; fCubicY[i] = Y[i] * kRadius + kCenterY; } double errX = std::get<0>(eval_cubic(fCubicX.data(), fMaxErrorT)) - kCenterX; double errY = std::get<0>(eval_cubic(fCubicY.data(), fMaxErrorT)) - kCenterY; fMaxError = std::sqrt(errX*errX + errY*errY) - kRadius; fInfoStrings.push_back().printf("max error=%.5gpx", fMaxError); fTheta = std::atan2(fEndptsY[1], fEndptsX[1]) - std::atan2(fEndptsY[0], fEndptsX[0]); fTheta = std::abs(fTheta * 180/M_PI); if (fTheta > 180) { fTheta = 360 - fTheta; } fInfoStrings.push_back().printf("(theta=%.2f)", fTheta); SkDebugf("\n"); for (const SkString& infoString : fInfoStrings) { SkDebugf("%s\n", infoString.c_str()); } } void SampleFitCubicToCircle::onDrawContent(SkCanvas* canvas) { canvas->clear(SK_ColorBLACK); SkPaint circlePaint; circlePaint.setColor(0x80ffffff); circlePaint.setStyle(SkPaint::kStroke_Style); circlePaint.setStrokeWidth(0); circlePaint.setAntiAlias(true); canvas->drawArc(SkRect::MakeXYWH(kCenterX - kRadius, kCenterY - kRadius, kRadius * 2, kRadius * 2), 0, 360, false, circlePaint); SkPaint cubicPaint; cubicPaint.setColor(SK_ColorGREEN); cubicPaint.setStyle(SkPaint::kStroke_Style); cubicPaint.setStrokeWidth(10); cubicPaint.setAntiAlias(true); SkPath cubicPath; cubicPath.moveTo(fCubicX[0], fCubicY[0]); cubicPath.cubicTo(fCubicX[1], fCubicY[1], fCubicX[2], fCubicY[2], fCubicX[3], fCubicY[3]); canvas->drawPath(cubicPath, cubicPaint); SkPaint endpointsPaint; endpointsPaint.setColor(SK_ColorBLUE); endpointsPaint.setStrokeWidth(8); endpointsPaint.setAntiAlias(true); SkPoint points[2] = {{(float)fCubicX[0], (float)fCubicY[0]}, {(float)fCubicX[3], (float)fCubicY[3]}}; canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, points, endpointsPaint); SkPaint textPaint; textPaint.setColor(SK_ColorWHITE); constexpr static float kInfoTextSize = 16; SkFont font(nullptr, kInfoTextSize); int infoY = 10 + kInfoTextSize; for (const SkString& infoString : fInfoStrings) { canvas->drawString(infoString.c_str(), 10, infoY, font, textPaint); infoY += kInfoTextSize * 3/2; } } class SampleFitCubicToCircle::Click : public Sample::Click { public: Click(int ptIdx) : fPtIdx(ptIdx) {} void doClick(SampleFitCubicToCircle* that) { double dx = fCurr.fX - kCenterX; double dy = fCurr.fY - kCenterY; double l = std::sqrt(dx*dx + dy*dy); that->fEndptsX[fPtIdx] = dx/l; that->fEndptsY[fPtIdx] = dy/l; if (that->fEndptsX[0] * that->fEndptsY[1] - that->fEndptsY[0] * that->fEndptsX[1] < 0) { std::swap(that->fEndptsX[0], that->fEndptsX[1]); std::swap(that->fEndptsY[0], that->fEndptsY[1]); fPtIdx = 1 - fPtIdx; } that->fitCubic(); } private: int fPtIdx; }; Sample::Click* SampleFitCubicToCircle::onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) { double dx0 = x - fCubicX[0]; double dy0 = y - fCubicY[0]; double dx3 = x - fCubicX[3]; double dy3 = y - fCubicY[3]; if (dx0*dx0 + dy0*dy0 < dx3*dx3 + dy3*dy3) { return new Click(0); } else { return new Click(1); } } bool SampleFitCubicToCircle::onClick(Sample::Click* click) { Click* myClick = (Click*)click; myClick->doClick(this); return true; } bool SampleFitCubicToCircle::onChar(SkUnichar unichar) { if (unichar == 'E') { constexpr static double kMaxErrorT = 0.21132486540519; // Always the same. // Split the arc in half until error =~0, and report the improvement after each halving. double lastError = -1; for (double theta = fTheta; lastError != 0; theta /= 2) { double rads = theta * M_PI/180; std::array X, Y; fit_cubic_to_unit_circle(1, 0, std::cos(rads), std::sin(rads), &X, &Y); auto [x, dx, ddx] = eval_cubic(X.data(), kMaxErrorT); auto [y, dy, ddy] = eval_cubic(Y.data(), kMaxErrorT); double error = std::sqrt(x*x + y*y) * kRadius - kRadius; if ((float)error <= 0) { error = 0; } SkDebugf("%6.2f degrees: error= %10.5gpx", theta, error); if (lastError > 0) { SkDebugf(" (%17.14fx improvement)", lastError / error); } SkDebugf("\n"); lastError = error; } return true; } return false; } DEF_SAMPLE(return new SampleFitCubicToCircle;)