/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkPaint.h" #include "include/core/SkRRect.h" #include "include/private/SkM44.h" #include "include/utils/SkRandom.h" #include "samplecode/Sample.h" #include "tools/Resources.h" static SkV3 normalize(SkV3 v) { return v * (1.0f / v.length()); } struct SkVec2 { SkScalar x, y; bool operator==(const SkVec2 v) const { return x == v.x && y == v.y; } bool operator!=(const SkVec2 v) const { return !(*this == v); } static SkScalar Dot(SkVec2 a, SkVec2 b) { return a.x * b.x + a.y * b.y; } static SkScalar Cross(SkVec2 a, SkVec2 b) { return a.x * b.y - a.y * b.x; } SkVec2 operator-() const { return {-x, -y}; } SkVec2 operator+(SkVec2 v) const { return {x+v.x, y+v.y}; } SkVec2 operator-(SkVec2 v) const { return {x-v.x, y-v.y}; } SkVec2 operator*(SkVec2 v) const { return {x*v.x, y*v.y}; } friend SkVec2 operator*(SkVec2 v, SkScalar s) { return {v.x*s, v.y*s}; } friend SkVec2 operator*(SkScalar s, SkVec2 v) { return {v.x*s, v.y*s}; } void operator+=(SkVec2 v) { *this = *this + v; } void operator-=(SkVec2 v) { *this = *this - v; } void operator*=(SkVec2 v) { *this = *this * v; } void operator*=(SkScalar s) { *this = *this * s; } SkScalar lengthSquared() const { return Dot(*this, *this); } SkScalar length() const { return SkScalarSqrt(this->lengthSquared()); } SkScalar dot(SkVec2 v) const { return Dot(*this, v); } SkScalar cross(SkVec2 v) const { return Cross(*this, v); } }; static SkVec2 normalize(SkVec2 v) { SkScalar len = v.length(); SkASSERT(len > 0); return v * (1.0f / len); } struct VSphere { SkVec2 fCenter; SkScalar fRadius; VSphere(SkVec2 center, SkScalar radius) : fCenter(center), fRadius(radius) {} bool contains(SkVec2 v) const { return (v - fCenter).length() <= fRadius; } SkVec2 pinLoc(SkVec2 p) const { auto v = p - fCenter; if (v.length() > fRadius) { v *= (fRadius / v.length()); } return fCenter + v; } SkV3 computeUnitV3(SkVec2 v) const { v = (v - fCenter) * (1 / fRadius); SkScalar len2 = v.lengthSquared(); if (len2 > 1) { v = normalize(v); len2 = 1; } SkScalar z = SkScalarSqrt(1 - len2); return {v.x, v.y, z}; } SkM44 computeRotation(SkVec2 a, SkVec2 b) { SkV3 u = this->computeUnitV3(a); SkV3 v = this->computeUnitV3(b); SkV3 axis = u.cross(v); SkScalar sinValue = axis.length(); SkScalar cosValue = u.dot(v); SkM44 m; if (!SkScalarNearlyZero(sinValue)) { m.setRotateUnitSinCos(axis * (1.0f / sinValue), sinValue, cosValue); } return m; } }; static SkM44 inv(const SkM44& m) { SkM44 inverse; SkAssertResult(m.invert(&inverse)); return inverse; } static SkPoint project(const SkM44& m, SkV4 p) { auto v = m * p; return {v.x / v.w, v.y / v.w}; } class Sample3DView : public Sample { protected: float fNear = 0.05f; float fFar = 4; float fAngle = SK_ScalarPI / 12; SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 }; SkV3 fCOA { 0, 0, 0 }; SkV3 fUp { 0, 1, 0 }; SkM44 fRot; SkV3 fTrans; void rotate(float x, float y, float z) { SkM44 r; if (x) { r.setRotateUnit({1, 0, 0}, x); } else if (y) { r.setRotateUnit({0, 1, 0}, y); } else { r.setRotateUnit({0, 0, 1}, z); } fRot = r * fRot; } public: void saveCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) { SkM44 camera = Sk3LookAt(fEye, fCOA, fUp), perspective = Sk3Perspective(fNear, fFar, fAngle), viewport = SkM44::Translate(area.centerX(), area.centerY(), 0) * SkM44::Scale(area.width()*0.5f, area.height()*0.5f, zscale); // want "world" to be in our big coordinates (e.g. area), so apply this inverse // as part of our "camera". canvas->experimental_saveCamera(viewport * perspective, camera * inv(viewport)); } bool onChar(SkUnichar uni) override { float delta = SK_ScalarPI / 30; switch (uni) { case '8': this->rotate( delta, 0, 0); return true; case '2': this->rotate(-delta, 0, 0); return true; case '4': this->rotate(0, delta, 0); return true; case '6': this->rotate(0, -delta, 0); return true; case '-': this->rotate(0, 0, delta); return true; case '+': this->rotate(0, 0, -delta); return true; case 'i': fTrans.z += 0.1f; SkDebugf("z %g\n", fTrans.z); return true; case 'k': fTrans.z -= 0.1f; SkDebugf("z %g\n", fTrans.z); return true; case 'n': fNear += 0.1f; SkDebugf("near %g\n", fNear); return true; case 'N': fNear -= 0.1f; SkDebugf("near %g\n", fNear); return true; case 'f': fFar += 0.1f; SkDebugf("far %g\n", fFar); return true; case 'F': fFar -= 0.1f; SkDebugf("far %g\n", fFar); return true; default: break; } return false; } }; struct Face { SkScalar fRx, fRy; SkColor fColor; static SkM44 T(SkScalar x, SkScalar y, SkScalar z) { return SkM44::Translate(x, y, z); } static SkM44 R(SkV3 axis, SkScalar rad) { return SkM44::Rotate(axis, rad); } SkM44 asM44(SkScalar scale) const { return R({0,1,0}, fRy) * R({1,0,0}, fRx) * T(0, 0, scale); } }; static bool front(const SkM44& m) { SkM44 m2; m.invert(&m2); /* * Classically we want to dot the transpose(inverse(ctm)) with our surface normal. * In this case, the normal is known to be {0, 0, 1}, so we only actually need to look * at the z-scale of the inverse (the transpose doesn't change the main diagonal, so * no need to actually transpose). */ return m2.rc(2,2) > 0; } const Face faces[] = { { 0, 0, SK_ColorRED }, // front { 0, SK_ScalarPI, SK_ColorGREEN }, // back { SK_ScalarPI/2, 0, SK_ColorBLUE }, // top {-SK_ScalarPI/2, 0, SK_ColorCYAN }, // bottom { 0, SK_ScalarPI/2, SK_ColorMAGENTA }, // left { 0,-SK_ScalarPI/2, SK_ColorYELLOW }, // right }; #include "include/core/SkColorFilter.h" #include "include/effects/SkColorMatrix.h" static SkColorMatrix comput_planar_lighting(SkCanvas* canvas, SkV3 lightDir) { SkM44 l2w = canvas->experimental_getLocalToWorld(); auto normal = normalize(l2w * SkV3{0, 0, 1}); float dot = -normal.dot(lightDir); SkColorMatrix cm; if (dot < 0) { dot = 0; } float ambient = 0.5f; float scale = ambient + dot; cm.setScale(scale, scale, scale, 1); return cm; } struct Light { SkPoint fCenter; SkPoint fEndPt; SkScalar fRadius; SkScalar fHeight; bool hitTest(SkScalar x, SkScalar y) const { auto xx = x - fCenter.fX; auto yy = y - fCenter.fY; return xx*xx + yy*yy <= fRadius*fRadius; } void update(SkScalar x, SkScalar y) { auto xx = x - fCenter.fX; auto yy = y - fCenter.fY; auto len = SkScalarSqrt(xx*xx + yy*yy); if (len > fRadius) { xx *= fRadius / len; yy *= fRadius / len; } fEndPt = {fCenter.fX + xx, fCenter.fY + yy}; } SkV3 getDir() const { auto pt = fEndPt - fCenter; return normalize({pt.fX, pt.fY, -fHeight}); } void draw(SkCanvas* canvas) { SkPaint paint; paint.setAntiAlias(true); canvas->drawCircle(fCenter.fX, fCenter.fY, 5, paint); paint.setStyle(SkPaint::kStroke_Style); canvas->drawCircle(fCenter.fX, fCenter.fY, fRadius, paint); paint.setColor(SK_ColorRED); canvas->drawLine(fCenter.fX, fCenter.fY, fEndPt.fX, fEndPt.fY, paint); } }; class SampleRR3D : public Sample3DView { SkRRect fRR; Light fLight = { {60, 60}, {60, 60}, 50, 10 }; sk_sp fShader; SkString name() override { return SkString("rrect3d"); } void onOnceBeforeDraw() override { fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50); fShader = GetResourceAsImage("images/mandrill_128.png") ->makeShader(SkMatrix::MakeScale(3, 3)); } bool onChar(SkUnichar uni) override { return this->Sample3DView::onChar(uni); } void drawContent(SkCanvas* canvas, const SkM44& m) { SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation canvas->experimental_concat44(trans * fRot * m * inv(trans)); if (!front(canvas->experimental_getLocalToDevice())) { return; } SkPaint paint; paint.setAlphaf(front(canvas->experimental_getLocalToDevice()) ? 1 : 0.25f); paint.setShader(fShader); SkColorMatrix cm = comput_planar_lighting(canvas, fLight.getDir()); paint.setColorFilter(SkColorFilters::Matrix(cm)); canvas->drawRRect(fRR, paint); } void onDrawContent(SkCanvas* canvas) override { canvas->save(); canvas->translate(400, 300); this->saveCamera(canvas, {0, 0, 400, 400}, 200); for (auto f : faces) { SkAutoCanvasRestore acr(canvas, true); this->drawContent(canvas, f.asM44(200)); } canvas->restore(); canvas->restore(); fLight.draw(canvas); } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { if (fLight.hitTest(x, y)) { return new Click(); } return nullptr; } bool onClick(Click* click) override { fLight.update(click->fCurr.fX, click->fCurr.fY); return true; } }; DEF_SAMPLE( return new SampleRR3D(); ) #include "include/effects/SkRuntimeEffect.h" struct LightPos { SkV4 fPos; SkScalar fUIRadius; bool hitTest(SkScalar x, SkScalar y) const { auto xx = x - fPos.x; auto yy = y - fPos.y; return xx*xx + yy*yy <= fUIRadius*fUIRadius; } void update(SkScalar x, SkScalar y) { fPos.x = x; fPos.y = y; } void draw(SkCanvas* canvas) { SkPaint paint; paint.setAntiAlias(true); SkAutoCanvasRestore acr(canvas, true); canvas->experimental_concat44(SkM44::Translate(0, 0, fPos.z)); canvas->drawCircle(fPos.x, fPos.y, fUIRadius, paint); } }; class SamplePointLight3D : public Sample3DView { SkRRect fRR; LightPos fLight = {{200, 200, 800, 1}, 8}; sk_sp fShader; sk_sp fEffect; SkM44 fWorldToClick, fClickToWorld; SkString name() override { return SkString("pointlight3d"); } void onOnceBeforeDraw() override { fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50); fShader = GetResourceAsImage("images/mandrill_128.png") ->makeShader(SkMatrix::MakeScale(3, 3)); const char code[] = R"( // in fragmentProcessor texture; // color = sample(texture) * half(scale); uniform float4x4 localToWorld; uniform float3 lightPos; // TODO: Remove these helpers once all intrinsics work on the raster backend float3 normalize_(float3 v) { return v / sqrt(dot(v, v)); } float max_(float a, float b) { return a > b ? a : b; } void main(float x, float y, inout half4 color) { float3 plane_pos = (localToWorld * float4(x, y, 0, 1)).xyz; float3 plane_norm = normalize_((localToWorld * float4(0, 0, 1, 0)).xyz); float3 light_dir = normalize_(lightPos - plane_pos); float ambient = 0.5; float dp = dot(plane_norm, light_dir); float scale = ambient + max_(dp, 0); color = color * half4(float4(scale, scale, scale, 1)); } )"; auto [effect, error] = SkRuntimeEffect::Make(SkString(code)); if (!effect) { SkDebugf("runtime error %s\n", error.c_str()); } fEffect = effect; } bool onChar(SkUnichar uni) override { switch (uni) { case 'Z': fLight.fPos.z += 10; return true; case 'z': fLight.fPos.z -= 10; return true; } return this->Sample3DView::onChar(uni); } void drawContent(SkCanvas* canvas, const SkM44& m, SkColor color) { SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation canvas->experimental_concat44(trans * fRot * m * inv(trans)); // wonder if the runtimeeffect can do this reject? (in a setup function) if (!front(canvas->experimental_getLocalToDevice())) { return; } struct Uniforms { SkM44 fLocalToWorld; SkV3 fLightPos; } uni; uni.fLocalToWorld = canvas->experimental_getLocalToWorld(); uni.fLightPos = {fLight.fPos.x, fLight.fPos.y, fLight.fPos.z}; sk_sp data = SkData::MakeWithCopy(&uni, sizeof(uni)); SkPaint paint; paint.setColor(color); paint.setShader(fEffect->makeShader(data, &fShader, 0, nullptr, true)); canvas->drawRRect(fRR, paint); } void setClickToWorld(SkCanvas* canvas, const SkM44& clickM) { auto l2d = canvas->experimental_getLocalToDevice(); fWorldToClick = inv(clickM) * l2d; fClickToWorld = inv(fWorldToClick); } void onDrawContent(SkCanvas* canvas) override { SkM44 clickM = canvas->experimental_getLocalToDevice(); canvas->save(); canvas->translate(400, 300); this->saveCamera(canvas, {0, 0, 400, 400}, 200); this->setClickToWorld(canvas, clickM); for (auto f : faces) { SkAutoCanvasRestore acr(canvas, true); this->drawContent(canvas, f.asM44(200), f.fColor); } fLight.draw(canvas); canvas->restore(); canvas->restore(); } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { auto L = fWorldToClick * fLight.fPos; SkPoint c = project(fClickToWorld, {x, y, L.z/L.w, 1}); if (fLight.hitTest(c.fX, c.fY)) { return new Click(); } return nullptr; } bool onClick(Click* click) override { auto L = fWorldToClick * fLight.fPos; SkPoint c = project(fClickToWorld, {click->fCurr.fX, click->fCurr.fY, L.z/L.w, 1}); fLight.update(c.fX, c.fY); return true; } }; DEF_SAMPLE( return new SamplePointLight3D(); ) #include "include/core/SkColorPriv.h" #include "include/core/SkSurface.h" struct LightOnSphere { SkVec2 fLoc; SkScalar fDistance; SkScalar fRadius; SkV3 computeWorldPos(const VSphere& s) const { return s.computeUnitV3(fLoc) * fDistance; } void draw(SkCanvas* canvas) const { SkPaint paint; paint.setAntiAlias(true); paint.setColor(SK_ColorWHITE); canvas->drawCircle(fLoc.x, fLoc.y, fRadius + 2, paint); paint.setColor(SK_ColorBLACK); canvas->drawCircle(fLoc.x, fLoc.y, fRadius, paint); } }; class SampleBump3D : public Sample3DView { enum { DX = 400, DY = 300 }; SkRRect fRR; LightOnSphere fLight = {{200 + DX, 200 + DY}, 800, 12}; VSphere fSphere; sk_sp fBmpShader, fImgShader; sk_sp fEffect; SkM44 fWorldToClick, fClickToWorld; SkM44 fRotation, // part of model fClickRotation; // temp during a click/drag public: SampleBump3D() : fSphere({200 + DX, 200 + DY}, 400) {} SkString name() override { return SkString("bump3d"); } void onOnceBeforeDraw() override { fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50); auto img = GetResourceAsImage("images/brickwork-texture.jpg"); fImgShader = img->makeShader(SkMatrix::MakeScale(2, 2)); img = GetResourceAsImage("images/brickwork_normal-map.jpg"); fBmpShader = img->makeShader(SkMatrix::MakeScale(2, 2)); const char code[] = R"( in fragmentProcessor color_map; in fragmentProcessor normal_map; uniform float4x4 localToWorld; uniform float4x4 localToWorldAdjInv; uniform float3 lightPos; float3 convert_normal_sample(half4 c) { float3 n = 2 * c.rgb - 1; n.y = -n.y; return n; } void main(float x, float y, inout half4 color) { float3 norm = convert_normal_sample(sample(normal_map)); float3 plane_norm = normalize(localToWorld * float4(norm, 0)).xyz; float3 plane_pos = (localToWorld * float4(x, y, 0, 1)).xyz; float3 light_dir = normalize(lightPos - plane_pos); float ambient = 0.2; float dp = dot(plane_norm, light_dir); float scale = min(ambient + max(dp, 0), 1); color = sample(color_map) * half4(float4(scale, scale, scale, 1)); } )"; auto [effect, error] = SkRuntimeEffect::Make(SkString(code)); if (!effect) { SkDebugf("runtime error %s\n", error.c_str()); } fEffect = effect; } bool onChar(SkUnichar uni) override { switch (uni) { case 'Z': fLight.fDistance += 10; return true; case 'z': fLight.fDistance -= 10; return true; } return this->Sample3DView::onChar(uni); } void drawContent(SkCanvas* canvas, const SkM44& m, SkColor color) { SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation canvas->experimental_concat44(trans * fRot * m * inv(trans)); // wonder if the runtimeeffect can do this reject? (in a setup function) if (!front(canvas->experimental_getLocalToDevice())) { return; } auto adj_inv = [](const SkM44& m) { SkM44 inv; SkAssertResult(m.invert(&inv)); return inv.transpose(); }; struct Uniforms { SkM44 fLocalToWorld; SkM44 fLocalToWorldAdjInv; SkV3 fLightPos; } uni; uni.fLocalToWorld = canvas->experimental_getLocalToWorld(); uni.fLocalToWorldAdjInv = adj_inv(uni.fLocalToWorld); uni.fLightPos = fLight.computeWorldPos(fSphere); sk_sp data = SkData::MakeWithCopy(&uni, sizeof(uni)); sk_sp children[] = { fImgShader, fBmpShader }; SkPaint paint; paint.setColor(color); paint.setShader(fEffect->makeShader(data, children, 2, nullptr, true)); canvas->drawRRect(fRR, paint); } void setClickToWorld(SkCanvas* canvas, const SkM44& clickM) { auto l2d = canvas->experimental_getLocalToDevice(); fWorldToClick = inv(clickM) * l2d; fClickToWorld = inv(fWorldToClick); } void onDrawContent(SkCanvas* canvas) override { if (canvas->getGrContext() == nullptr) { return; } SkM44 clickM = canvas->experimental_getLocalToDevice(); canvas->save(); canvas->translate(DX, DY); this->saveCamera(canvas, {0, 0, 400, 400}, 200); this->setClickToWorld(canvas, clickM); for (auto f : faces) { SkAutoCanvasRestore acr(canvas, true); this->drawContent(canvas, fClickRotation * fRotation * f.asM44(200), f.fColor); } canvas->restore(); // camera canvas->restore(); // center the content in the window fLight.draw(canvas); { SkPaint paint; paint.setAntiAlias(true); paint.setStyle(SkPaint::kStroke_Style); paint.setColor(0x40FF0000); canvas->drawCircle(fSphere.fCenter.x, fSphere.fCenter.y, fSphere.fRadius, paint); canvas->drawLine(fSphere.fCenter.x, fSphere.fCenter.y - fSphere.fRadius, fSphere.fCenter.x, fSphere.fCenter.y + fSphere.fRadius, paint); canvas->drawLine(fSphere.fCenter.x - fSphere.fRadius, fSphere.fCenter.y, fSphere.fCenter.x + fSphere.fRadius, fSphere.fCenter.y, paint); } } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { SkVec2 p = fLight.fLoc - SkVec2{x, y}; if (p.length() <= fLight.fRadius) { Click* c = new Click(); c->fMeta.setS32("type", 0); return c; } if (fSphere.contains({x, y})) { Click* c = new Click(); c->fMeta.setS32("type", 1); return c; } return nullptr; } bool onClick(Click* click) override { #if 0 auto L = fWorldToClick * fLight.fPos; SkPoint c = project(fClickToWorld, {click->fCurr.fX, click->fCurr.fY, L.z/L.w, 1}); fLight.update(c.fX, c.fY); #endif if (click->fMeta.hasS32("type", 0)) { fLight.fLoc = fSphere.pinLoc({click->fCurr.fX, click->fCurr.fY}); return true; } if (click->fMeta.hasS32("type", 1)) { if (click->fState == skui::InputState::kUp) { fRotation = fClickRotation * fRotation; fClickRotation.setIdentity(); } else { fClickRotation = fSphere.computeRotation({click->fOrig.fX, click->fOrig.fY}, {click->fCurr.fX, click->fCurr.fY}); } return true; } return true; } }; DEF_SAMPLE( return new SampleBump3D; )