/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tools/viewer/Viewer.h" #include "include/core/SkCanvas.h" #include "include/core/SkData.h" #include "include/core/SkGraphics.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/gpu/GrDirectContext.h" #include "include/private/SkTPin.h" #include "include/private/SkTo.h" #include "include/utils/SkPaintFilterCanvas.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkImagePriv.h" #include "src/core/SkMD5.h" #include "src/core/SkOSFile.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkScan.h" #include "src/core/SkSurfacePriv.h" #include "src/core/SkTSort.h" #include "src/core/SkTaskGroup.h" #include "src/core/SkTextBlobPriv.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrPersistentCacheUtils.h" #include "src/gpu/GrShaderUtils.h" #include "src/gpu/tessellate/GrTessellationPathRenderer.h" #include "src/image/SkImage_Base.h" #include "src/sksl/SkSLCompiler.h" #include "src/utils/SkJSONWriter.h" #include "src/utils/SkOSPath.h" #include "tools/Resources.h" #include "tools/RuntimeBlendUtils.h" #include "tools/ToolUtils.h" #include "tools/flags/CommandLineFlags.h" #include "tools/flags/CommonFlags.h" #include "tools/trace/EventTracingPriv.h" #include "tools/viewer/BisectSlide.h" #include "tools/viewer/GMSlide.h" #include "tools/viewer/ImageSlide.h" #include "tools/viewer/MSKPSlide.h" #include "tools/viewer/ParticlesSlide.h" #include "tools/viewer/SKPSlide.h" #include "tools/viewer/SampleSlide.h" #include "tools/viewer/SkSLSlide.h" #include "tools/viewer/SlideDir.h" #include "tools/viewer/SvgSlide.h" #include #include #include "imgui.h" #include "misc/cpp/imgui_stdlib.h" // For ImGui support of std::string #ifdef SK_VULKAN #include "spirv-tools/libspirv.hpp" #endif #if defined(SK_ENABLE_SKOTTIE) #include "tools/viewer/SkottieSlide.h" #endif #if defined(SK_ENABLE_SKRIVE) #include "tools/viewer/SkRiveSlide.h" #endif class CapturingShaderErrorHandler : public GrContextOptions::ShaderErrorHandler { public: void compileError(const char* shader, const char* errors) override { fShaders.push_back(SkString(shader)); fErrors.push_back(SkString(errors)); } void reset() { fShaders.reset(); fErrors.reset(); } SkTArray fShaders; SkTArray fErrors; }; static CapturingShaderErrorHandler gShaderErrorHandler; GrContextOptions::ShaderErrorHandler* Viewer::ShaderErrorHandler() { return &gShaderErrorHandler; } using namespace sk_app; using SkSL::Compiler; using OverrideFlag = SkSL::Compiler::OverrideFlag; static std::map gPathRendererNames; Application* Application::Create(int argc, char** argv, void* platformData) { return new Viewer(argc, argv, platformData); } static DEFINE_string(slide, "", "Start on this sample."); static DEFINE_bool(list, false, "List samples?"); #ifdef SK_GL #define GL_BACKEND_STR ", \"gl\"" #else #define GL_BACKEND_STR #endif #ifdef SK_VULKAN #define VK_BACKEND_STR ", \"vk\"" #else #define VK_BACKEND_STR #endif #ifdef SK_METAL #define MTL_BACKEND_STR ", \"mtl\"" #else #define MTL_BACKEND_STR #endif #ifdef SK_DIRECT3D #define D3D_BACKEND_STR ", \"d3d\"" #else #define D3D_BACKEND_STR #endif #ifdef SK_DAWN #define DAWN_BACKEND_STR ", \"dawn\"" #else #define DAWN_BACKEND_STR #endif #define BACKENDS_STR_EVALUATOR(sw, gl, vk, mtl, d3d, dawn) sw gl vk mtl d3d dawn #define BACKENDS_STR BACKENDS_STR_EVALUATOR( \ "\"sw\"", GL_BACKEND_STR, VK_BACKEND_STR, MTL_BACKEND_STR, D3D_BACKEND_STR, DAWN_BACKEND_STR) static DEFINE_string2(backend, b, "sw", "Backend to use. Allowed values are " BACKENDS_STR "."); static DEFINE_int(msaa, 1, "Number of subpixel samples. 0 for no HW antialiasing."); static DEFINE_bool(dmsaa, false, "Use internal MSAA to render to non-MSAA surfaces?"); static DEFINE_string(bisect, "", "Path to a .skp or .svg file to bisect."); static DEFINE_string2(file, f, "", "Open a single file for viewing."); static DEFINE_string2(match, m, nullptr, "[~][^]substring[$] [...] of name to run.\n" "Multiple matches may be separated by spaces.\n" "~ causes a matching name to always be skipped\n" "^ requires the start of the name to match\n" "$ requires the end of the name to match\n" "^ and $ requires an exact match\n" "If a name does not match any list entry,\n" "it is skipped unless some list entry starts with ~"); #if defined(SK_BUILD_FOR_ANDROID) # define PATH_PREFIX "/data/local/tmp/" #else # define PATH_PREFIX "" #endif static DEFINE_string(jpgs , PATH_PREFIX "jpgs" , "Directory to read jpgs from."); static DEFINE_string(skps , PATH_PREFIX "skps" , "Directory to read skps from."); static DEFINE_string(mskps , PATH_PREFIX "mskps" , "Directory to read mskps from."); static DEFINE_string(lotties, PATH_PREFIX "lotties", "Directory to read (Bodymovin) jsons from."); static DEFINE_string(rives , PATH_PREFIX "rives" , "Directory to read Rive (Flare) files from."); #undef PATH_PREFIX static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file."); static DEFINE_int_2(threads, j, -1, "Run threadsafe tests on a threadpool with this many extra threads, " "defaulting to one extra thread per core."); static DEFINE_bool(redraw, false, "Toggle continuous redraw."); static DEFINE_bool(offscreen, false, "Force rendering to an offscreen surface."); static DEFINE_bool(skvm, false, "Force skvm blitters for raster."); static DEFINE_bool(jit, true, "JIT SkVM?"); static DEFINE_bool(dylib, false, "JIT via dylib (much slower compile but easier to debug/profile)"); static DEFINE_bool(stats, false, "Display stats overlay on startup."); static DEFINE_bool(binaryarchive, false, "Enable MTLBinaryArchive use (if available)."); #ifndef SK_GL static_assert(false, "viewer requires GL backend for raster.") #endif const char* kBackendTypeStrings[sk_app::Window::kBackendTypeCount] = { "OpenGL", #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) "ANGLE", #endif #ifdef SK_DAWN "Dawn", #endif #ifdef SK_VULKAN "Vulkan", #endif #ifdef SK_METAL "Metal", #endif #ifdef SK_DIRECT3D "Direct3D", #endif "Raster" }; static sk_app::Window::BackendType get_backend_type(const char* str) { #ifdef SK_DAWN if (0 == strcmp(str, "dawn")) { return sk_app::Window::kDawn_BackendType; } else #endif #ifdef SK_VULKAN if (0 == strcmp(str, "vk")) { return sk_app::Window::kVulkan_BackendType; } else #endif #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) if (0 == strcmp(str, "angle")) { return sk_app::Window::kANGLE_BackendType; } else #endif #ifdef SK_METAL if (0 == strcmp(str, "mtl")) { return sk_app::Window::kMetal_BackendType; } else #endif #ifdef SK_DIRECT3D if (0 == strcmp(str, "d3d")) { return sk_app::Window::kDirect3D_BackendType; } else #endif if (0 == strcmp(str, "gl")) { return sk_app::Window::kNativeGL_BackendType; } else if (0 == strcmp(str, "sw")) { return sk_app::Window::kRaster_BackendType; } else { SkDebugf("Unknown backend type, %s, defaulting to sw.", str); return sk_app::Window::kRaster_BackendType; } } static SkColorSpacePrimaries gSrgbPrimaries = { 0.64f, 0.33f, 0.30f, 0.60f, 0.15f, 0.06f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gAdobePrimaries = { 0.64f, 0.33f, 0.21f, 0.71f, 0.15f, 0.06f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gP3Primaries = { 0.680f, 0.320f, 0.265f, 0.690f, 0.150f, 0.060f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gRec2020Primaries = { 0.708f, 0.292f, 0.170f, 0.797f, 0.131f, 0.046f, 0.3127f, 0.3290f }; struct NamedPrimaries { const char* fName; SkColorSpacePrimaries* fPrimaries; } gNamedPrimaries[] = { { "sRGB", &gSrgbPrimaries }, { "AdobeRGB", &gAdobePrimaries }, { "P3", &gP3Primaries }, { "Rec. 2020", &gRec2020Primaries }, }; static bool primaries_equal(const SkColorSpacePrimaries& a, const SkColorSpacePrimaries& b) { return memcmp(&a, &b, sizeof(SkColorSpacePrimaries)) == 0; } static Window::BackendType backend_type_for_window(Window::BackendType backendType) { // In raster mode, we still use GL for the window. // This lets us render the GUI faster (and correct). return Window::kRaster_BackendType == backendType ? Window::kNativeGL_BackendType : backendType; } class NullSlide : public Slide { SkISize getDimensions() const override { return SkISize::Make(640, 480); } void draw(SkCanvas* canvas) override { canvas->clear(0xffff11ff); } }; static const char kName[] = "name"; static const char kValue[] = "value"; static const char kOptions[] = "options"; static const char kSlideStateName[] = "Slide"; static const char kBackendStateName[] = "Backend"; static const char kMSAAStateName[] = "MSAA"; static const char kPathRendererStateName[] = "Path renderer"; static const char kSoftkeyStateName[] = "Softkey"; static const char kSoftkeyHint[] = "Please select a softkey"; static const char kON[] = "ON"; static const char kRefreshStateName[] = "Refresh"; extern bool gUseSkVMBlitter; extern bool gSkVMAllowJIT; extern bool gSkVMJITViaDylib; Viewer::Viewer(int argc, char** argv, void* platformData) : fCurrentSlide(-1) , fRefresh(false) , fSaveToSKP(false) , fShowSlideDimensions(false) , fShowImGuiDebugWindow(false) , fShowSlidePicker(false) , fShowImGuiTestWindow(false) , fShowZoomWindow(false) , fZoomWindowFixed(false) , fZoomWindowLocation{0.0f, 0.0f} , fLastImage(nullptr) , fZoomUI(false) , fBackendType(sk_app::Window::kNativeGL_BackendType) , fColorMode(ColorMode::kLegacy) , fColorSpacePrimaries(gSrgbPrimaries) // Our UI can only tweak gamma (currently), so start out gamma-only , fColorSpaceTransferFn(SkNamedTransferFn::k2Dot2) , fApplyBackingScale(true) , fZoomLevel(0.0f) , fRotation(0.0f) , fOffset{0.5f, 0.5f} , fGestureDevice(GestureDevice::kNone) , fTiled(false) , fDrawTileBoundaries(false) , fTileScale{0.25f, 0.25f} , fPerspectiveMode(kPerspective_Off) { SkGraphics::Init(); gPathRendererNames[GpuPathRenderers::kDefault] = "Default Path Renderers"; gPathRendererNames[GpuPathRenderers::kTessellation] = "Tessellation"; gPathRendererNames[GpuPathRenderers::kSmall] = "Small paths (cached sdf or alpha masks)"; gPathRendererNames[GpuPathRenderers::kTriangulating] = "Triangulating"; gPathRendererNames[GpuPathRenderers::kNone] = "Software masks"; SkDebugf("Command line arguments: "); for (int i = 1; i < argc; ++i) { SkDebugf("%s ", argv[i]); } SkDebugf("\n"); CommandLineFlags::Parse(argc, argv); #ifdef SK_BUILD_FOR_ANDROID SetResourcePath("/data/local/tmp/resources"); #endif gUseSkVMBlitter = FLAGS_skvm; gSkVMAllowJIT = FLAGS_jit; gSkVMJITViaDylib = FLAGS_dylib; ToolUtils::SetDefaultFontMgr(); initializeEventTracingForTools(); static SkTaskGroup::Enabler kTaskGroupEnabler(FLAGS_threads); fBackendType = get_backend_type(FLAGS_backend[0]); fWindow = Window::CreateNativeWindow(platformData); DisplayParams displayParams; displayParams.fMSAASampleCount = FLAGS_msaa; displayParams.fEnableBinaryArchive = FLAGS_binaryarchive; SetCtxOptionsFromCommonFlags(&displayParams.fGrContextOptions); displayParams.fGrContextOptions.fPersistentCache = &fPersistentCache; displayParams.fGrContextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kSkSL; displayParams.fGrContextOptions.fShaderErrorHandler = &gShaderErrorHandler; displayParams.fGrContextOptions.fSuppressPrints = true; if (FLAGS_dmsaa) { displayParams.fSurfaceProps = SkSurfaceProps( displayParams.fSurfaceProps.flags() | SkSurfaceProps::kDynamicMSAA_Flag, displayParams.fSurfaceProps.pixelGeometry()); } fWindow->setRequestedDisplayParams(displayParams); fDisplay = fWindow->getRequestedDisplayParams(); fRefresh = FLAGS_redraw; fImGuiLayer.setScaleFactor(fWindow->scaleFactor()); fStatsLayer.setDisplayScale((fZoomUI ? 2.0f : 1.0f) * fWindow->scaleFactor()); // Configure timers fStatsLayer.setActive(FLAGS_stats); fAnimateTimer = fStatsLayer.addTimer("Animate", SK_ColorMAGENTA, 0xffff66ff); fPaintTimer = fStatsLayer.addTimer("Paint", SK_ColorGREEN); fFlushTimer = fStatsLayer.addTimer("Flush", SK_ColorRED, 0xffff6666); // register callbacks fCommands.attach(fWindow); fWindow->pushLayer(this); fWindow->pushLayer(&fStatsLayer); fWindow->pushLayer(&fImGuiLayer); // add key-bindings fCommands.addCommand(' ', "GUI", "Toggle Debug GUI", [this]() { this->fShowImGuiDebugWindow = !this->fShowImGuiDebugWindow; fWindow->inval(); }); // Command to jump directly to the slide picker and give it focus fCommands.addCommand('/', "GUI", "Jump to slide picker", [this]() { this->fShowImGuiDebugWindow = true; this->fShowSlidePicker = true; fWindow->inval(); }); // Alias that to Backspace, to match SampleApp fCommands.addCommand(skui::Key::kBack, "Backspace", "GUI", "Jump to slide picker", [this]() { this->fShowImGuiDebugWindow = true; this->fShowSlidePicker = true; fWindow->inval(); }); fCommands.addCommand('g', "GUI", "Toggle GUI Demo", [this]() { this->fShowImGuiTestWindow = !this->fShowImGuiTestWindow; fWindow->inval(); }); fCommands.addCommand('z', "GUI", "Toggle zoom window", [this]() { this->fShowZoomWindow = !this->fShowZoomWindow; fWindow->inval(); }); fCommands.addCommand('Z', "GUI", "Toggle zoom window state", [this]() { this->fZoomWindowFixed = !this->fZoomWindowFixed; fWindow->inval(); }); fCommands.addCommand('v', "Swapchain", "Toggle vsync on/off", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); params.fDisableVsync = !params.fDisableVsync; fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('V', "Swapchain", "Toggle delayed acquire on/off (Metal only)", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); params.fDelayDrawableAcquisition = !params.fDelayDrawableAcquisition; fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('r', "Redraw", "Toggle redraw", [this]() { fRefresh = !fRefresh; fWindow->inval(); }); fCommands.addCommand('s', "Overlays", "Toggle stats display", [this]() { fStatsLayer.setActive(!fStatsLayer.getActive()); fWindow->inval(); }); fCommands.addCommand('0', "Overlays", "Reset stats", [this]() { fStatsLayer.resetMeasurements(); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('c', "Modes", "Cycle color mode", [this]() { switch (fColorMode) { case ColorMode::kLegacy: this->setColorMode(ColorMode::kColorManaged8888); break; case ColorMode::kColorManaged8888: this->setColorMode(ColorMode::kColorManagedF16); break; case ColorMode::kColorManagedF16: this->setColorMode(ColorMode::kColorManagedF16Norm); break; case ColorMode::kColorManagedF16Norm: this->setColorMode(ColorMode::kLegacy); break; } }); fCommands.addCommand('w', "Modes", "Toggle wireframe", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); params.fGrContextOptions.fWireframeMode = !params.fGrContextOptions.fWireframeMode; fWindow->setRequestedDisplayParams(params); fWindow->inval(); }); fCommands.addCommand('w', "Modes", "Toggle reduced shaders", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); params.fGrContextOptions.fReducedShaderVariations = !params.fGrContextOptions.fReducedShaderVariations; fWindow->setRequestedDisplayParams(params); fWindow->inval(); }); fCommands.addCommand(skui::Key::kRight, "Right", "Navigation", "Next slide", [this]() { this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0); }); fCommands.addCommand(skui::Key::kLeft, "Left", "Navigation", "Previous slide", [this]() { this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1); }); fCommands.addCommand(skui::Key::kUp, "Up", "Transform", "Zoom in", [this]() { this->changeZoomLevel(1.f / 32.f); fWindow->inval(); }); fCommands.addCommand(skui::Key::kDown, "Down", "Transform", "Zoom out", [this]() { this->changeZoomLevel(-1.f / 32.f); fWindow->inval(); }); fCommands.addCommand('d', "Modes", "Change rendering backend", [this]() { sk_app::Window::BackendType newBackend = (sk_app::Window::BackendType)( (fBackendType + 1) % sk_app::Window::kBackendTypeCount); // Switching to and from Vulkan is problematic on Linux so disabled for now #if defined(SK_BUILD_FOR_UNIX) && defined(SK_VULKAN) if (newBackend == sk_app::Window::kVulkan_BackendType) { newBackend = (sk_app::Window::BackendType)((newBackend + 1) % sk_app::Window::kBackendTypeCount); } else if (fBackendType == sk_app::Window::kVulkan_BackendType) { newBackend = sk_app::Window::kVulkan_BackendType; } #endif this->setBackend(newBackend); }); fCommands.addCommand('K', "IO", "Save slide to SKP", [this]() { fSaveToSKP = true; fWindow->inval(); }); fCommands.addCommand('&', "Overlays", "Show slide dimensios", [this]() { fShowSlideDimensions = !fShowSlideDimensions; fWindow->inval(); }); fCommands.addCommand('G', "Modes", "Geometry", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); uint32_t flags = params.fSurfaceProps.flags(); SkPixelGeometry defaultPixelGeometry = fDisplay.fSurfaceProps.pixelGeometry(); if (!fDisplayOverrides.fSurfaceProps.fPixelGeometry) { fDisplayOverrides.fSurfaceProps.fPixelGeometry = true; params.fSurfaceProps = SkSurfaceProps(flags, kUnknown_SkPixelGeometry); } else { switch (params.fSurfaceProps.pixelGeometry()) { case kUnknown_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kRGB_H_SkPixelGeometry); break; case kRGB_H_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kBGR_H_SkPixelGeometry); break; case kBGR_H_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kRGB_V_SkPixelGeometry); break; case kRGB_V_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kBGR_V_SkPixelGeometry); break; case kBGR_V_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, defaultPixelGeometry); fDisplayOverrides.fSurfaceProps.fPixelGeometry = false; break; } } fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('H', "Font", "Hinting mode", [this]() { if (!fFontOverrides.fHinting) { fFontOverrides.fHinting = true; fFont.setHinting(SkFontHinting::kNone); } else { switch (fFont.getHinting()) { case SkFontHinting::kNone: fFont.setHinting(SkFontHinting::kSlight); break; case SkFontHinting::kSlight: fFont.setHinting(SkFontHinting::kNormal); break; case SkFontHinting::kNormal: fFont.setHinting(SkFontHinting::kFull); break; case SkFontHinting::kFull: fFont.setHinting(SkFontHinting::kNone); fFontOverrides.fHinting = false; break; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('A', "Paint", "Antialias Mode", [this]() { if (!fPaintOverrides.fAntiAlias) { fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fAntiAlias = true; fPaint.setAntiAlias(false); gSkUseAnalyticAA = gSkForceAnalyticAA = false; } else { fPaint.setAntiAlias(true); switch (fPaintOverrides.fAntiAliasState) { case SkPaintFields::AntiAliasState::Alias: fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Normal; gSkUseAnalyticAA = gSkForceAnalyticAA = false; break; case SkPaintFields::AntiAliasState::Normal: fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAEnabled; gSkUseAnalyticAA = true; gSkForceAnalyticAA = false; break; case SkPaintFields::AntiAliasState::AnalyticAAEnabled: fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAForced; gSkUseAnalyticAA = gSkForceAnalyticAA = true; break; case SkPaintFields::AntiAliasState::AnalyticAAForced: fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fAntiAlias = false; gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA; gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA; break; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('D', "Modes", "DFT", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); uint32_t flags = params.fSurfaceProps.flags(); flags ^= SkSurfaceProps::kUseDeviceIndependentFonts_Flag; params.fSurfaceProps = SkSurfaceProps(flags, params.fSurfaceProps.pixelGeometry()); fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('L', "Font", "Subpixel Antialias Mode", [this]() { if (!fFontOverrides.fEdging) { fFontOverrides.fEdging = true; fFont.setEdging(SkFont::Edging::kAlias); } else { switch (fFont.getEdging()) { case SkFont::Edging::kAlias: fFont.setEdging(SkFont::Edging::kAntiAlias); break; case SkFont::Edging::kAntiAlias: fFont.setEdging(SkFont::Edging::kSubpixelAntiAlias); break; case SkFont::Edging::kSubpixelAntiAlias: fFont.setEdging(SkFont::Edging::kAlias); fFontOverrides.fEdging = false; break; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('S', "Font", "Subpixel Position Mode", [this]() { if (!fFontOverrides.fSubpixel) { fFontOverrides.fSubpixel = true; fFont.setSubpixel(false); } else { if (!fFont.isSubpixel()) { fFont.setSubpixel(true); } else { fFontOverrides.fSubpixel = false; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('B', "Font", "Baseline Snapping", [this]() { if (!fFontOverrides.fBaselineSnap) { fFontOverrides.fBaselineSnap = true; fFont.setBaselineSnap(false); } else { if (!fFont.isBaselineSnap()) { fFont.setBaselineSnap(true); } else { fFontOverrides.fBaselineSnap = false; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('p', "Transform", "Toggle Perspective Mode", [this]() { fPerspectiveMode = (kPerspective_Real == fPerspectiveMode) ? kPerspective_Fake : kPerspective_Real; this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('P', "Transform", "Toggle Perspective", [this]() { fPerspectiveMode = (kPerspective_Off == fPerspectiveMode) ? kPerspective_Real : kPerspective_Off; this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('a', "Transform", "Toggle Animation", [this]() { fAnimTimer.togglePauseResume(); }); fCommands.addCommand('u', "GUI", "Zoom UI", [this]() { fZoomUI = !fZoomUI; fStatsLayer.setDisplayScale((fZoomUI ? 2.0f : 1.0f) * fWindow->scaleFactor()); fWindow->inval(); }); fCommands.addCommand('$', "ViaSerialize", "Toggle ViaSerialize", [this]() { fDrawViaSerialize = !fDrawViaSerialize; this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('!', "SkVM", "Toggle SkVM blitter", [this]() { gUseSkVMBlitter = !gUseSkVMBlitter; this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('@', "SkVM", "Toggle SkVM JIT", [this]() { gSkVMAllowJIT = !gSkVMAllowJIT; this->updateTitle(); fWindow->inval(); }); // set up slides this->initSlides(); if (FLAGS_list) { this->listNames(); } fPerspectivePoints[0].set(0, 0); fPerspectivePoints[1].set(1, 0); fPerspectivePoints[2].set(0, 1); fPerspectivePoints[3].set(1, 1); fAnimTimer.run(); auto gamutImage = GetResourceAsImage("images/gamut.png"); if (gamutImage) { fImGuiGamutPaint.setShader(gamutImage->makeShader(SkSamplingOptions(SkFilterMode::kLinear))); } fImGuiGamutPaint.setColor(SK_ColorWHITE); fWindow->attach(backend_type_for_window(fBackendType)); this->setCurrentSlide(this->startupSlide()); } void Viewer::initSlides() { using SlideFactory = sk_sp(*)(const SkString& name, const SkString& path); static const struct { const char* fExtension; const char* fDirName; const CommandLineFlags::StringArray& fFlags; const SlideFactory fFactory; } gExternalSlidesInfo[] = { { ".mskp", "mskp-dir", FLAGS_mskps, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, { ".skp", "skp-dir", FLAGS_skps, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, { ".jpg", "jpg-dir", FLAGS_jpgs, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #if defined(SK_ENABLE_SKOTTIE) { ".json", "skottie-dir", FLAGS_lotties, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #endif #if defined(SK_ENABLE_SKRIVE) { ".flr", "skrive-dir", FLAGS_rives, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #endif #if defined(SK_XML) { ".svg", "svg-dir", FLAGS_svgs, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #endif }; SkTArray> dirSlides; const auto addSlide = [&](const SkString& name, const SkString& path, const SlideFactory& fact) { if (CommandLineFlags::ShouldSkip(FLAGS_match, name.c_str())) { return; } if (auto slide = fact(name, path)) { dirSlides.push_back(slide); fSlides.push_back(std::move(slide)); } }; if (!FLAGS_file.isEmpty()) { // single file mode const SkString file(FLAGS_file[0]); if (sk_exists(file.c_str(), kRead_SkFILE_Flag)) { for (const auto& sinfo : gExternalSlidesInfo) { if (file.endsWith(sinfo.fExtension)) { addSlide(SkOSPath::Basename(file.c_str()), file, sinfo.fFactory); return; } } fprintf(stderr, "Unsupported file type \"%s\"\n", file.c_str()); } else { fprintf(stderr, "Cannot read \"%s\"\n", file.c_str()); } return; } // Bisect slide. if (!FLAGS_bisect.isEmpty()) { sk_sp bisect = BisectSlide::Create(FLAGS_bisect[0]); if (bisect && !CommandLineFlags::ShouldSkip(FLAGS_match, bisect->getName().c_str())) { if (FLAGS_bisect.count() >= 2) { for (const char* ch = FLAGS_bisect[1]; *ch; ++ch) { bisect->onChar(*ch); } } fSlides.push_back(std::move(bisect)); } } // GMs int firstGM = fSlides.count(); for (skiagm::GMFactory gmFactory : skiagm::GMRegistry::Range()) { std::unique_ptr gm = gmFactory(); if (!CommandLineFlags::ShouldSkip(FLAGS_match, gm->getName())) { sk_sp slide(new GMSlide(std::move(gm))); fSlides.push_back(std::move(slide)); } } // reverse gms int numGMs = fSlides.count() - firstGM; for (int i = 0; i < numGMs/2; ++i) { std::swap(fSlides[firstGM + i], fSlides[fSlides.count() - i - 1]); } // samples for (const SampleFactory factory : SampleRegistry::Range()) { sk_sp slide(new SampleSlide(factory)); if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) { fSlides.push_back(slide); } } // Particle demo { // TODO: Convert this to a sample sk_sp slide(new ParticlesSlide()); if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) { fSlides.push_back(std::move(slide)); } } // Runtime shader editor { sk_sp slide(new SkSLSlide()); if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) { fSlides.push_back(std::move(slide)); } } for (const auto& info : gExternalSlidesInfo) { for (const auto& flag : info.fFlags) { if (SkStrEndsWith(flag.c_str(), info.fExtension)) { // single file addSlide(SkOSPath::Basename(flag.c_str()), flag, info.fFactory); } else { // directory SkString name; SkTArray sortedFilenames; SkOSFile::Iter it(flag.c_str(), info.fExtension); while (it.next(&name)) { sortedFilenames.push_back(name); } if (sortedFilenames.count()) { SkTQSort(sortedFilenames.begin(), sortedFilenames.end(), [](const SkString& a, const SkString& b) { return strcmp(a.c_str(), b.c_str()) < 0; }); } for (const SkString& filename : sortedFilenames) { addSlide(filename, SkOSPath::Join(flag.c_str(), filename.c_str()), info.fFactory); } } if (!dirSlides.empty()) { fSlides.push_back( sk_make_sp(SkStringPrintf("%s[%s]", info.fDirName, flag.c_str()), std::move(dirSlides))); dirSlides.reset(); // NOLINT(bugprone-use-after-move) } } } if (!fSlides.count()) { sk_sp slide(new NullSlide()); fSlides.push_back(std::move(slide)); } } Viewer::~Viewer() { for(auto& slide : fSlides) { slide->gpuTeardown(); } fWindow->detach(); delete fWindow; } struct SkPaintTitleUpdater { SkPaintTitleUpdater(SkString* title) : fTitle(title), fCount(0) {} void append(const char* s) { if (fCount == 0) { fTitle->append(" {"); } else { fTitle->append(", "); } fTitle->append(s); ++fCount; } void done() { if (fCount > 0) { fTitle->append("}"); } } SkString* fTitle; int fCount; }; void Viewer::updateTitle() { if (!fWindow) { return; } if (fWindow->sampleCount() < 1) { return; // Surface hasn't been created yet. } SkString title("Viewer: "); title.append(fSlides[fCurrentSlide]->getName()); if (gSkUseAnalyticAA) { if (gSkForceAnalyticAA) { title.append(" "); } else { title.append(" "); } } if (fDrawViaSerialize) { title.append(" "); } if (gUseSkVMBlitter) { title.append(" "); } if (!gSkVMAllowJIT) { title.append(" "); } SkPaintTitleUpdater paintTitle(&title); auto paintFlag = [this, &paintTitle](bool SkPaintFields::* flag, bool (SkPaint::* isFlag)() const, const char* on, const char* off) { if (fPaintOverrides.*flag) { paintTitle.append((fPaint.*isFlag)() ? on : off); } }; auto fontFlag = [this, &paintTitle](bool SkFontFields::* flag, bool (SkFont::* isFlag)() const, const char* on, const char* off) { if (fFontOverrides.*flag) { paintTitle.append((fFont.*isFlag)() ? on : off); } }; paintFlag(&SkPaintFields::fAntiAlias, &SkPaint::isAntiAlias, "Antialias", "Alias"); paintFlag(&SkPaintFields::fDither, &SkPaint::isDither, "DITHER", "No Dither"); fontFlag(&SkFontFields::fForceAutoHinting, &SkFont::isForceAutoHinting, "Force Autohint", "No Force Autohint"); fontFlag(&SkFontFields::fEmbolden, &SkFont::isEmbolden, "Fake Bold", "No Fake Bold"); fontFlag(&SkFontFields::fBaselineSnap, &SkFont::isBaselineSnap, "BaseSnap", "No BaseSnap"); fontFlag(&SkFontFields::fLinearMetrics, &SkFont::isLinearMetrics, "Linear Metrics", "Non-Linear Metrics"); fontFlag(&SkFontFields::fEmbeddedBitmaps, &SkFont::isEmbeddedBitmaps, "Bitmap Text", "No Bitmap Text"); fontFlag(&SkFontFields::fSubpixel, &SkFont::isSubpixel, "Subpixel Text", "Pixel Text"); if (fFontOverrides.fEdging) { switch (fFont.getEdging()) { case SkFont::Edging::kAlias: paintTitle.append("Alias Text"); break; case SkFont::Edging::kAntiAlias: paintTitle.append("Antialias Text"); break; case SkFont::Edging::kSubpixelAntiAlias: paintTitle.append("Subpixel Antialias Text"); break; } } if (fFontOverrides.fHinting) { switch (fFont.getHinting()) { case SkFontHinting::kNone: paintTitle.append("No Hinting"); break; case SkFontHinting::kSlight: paintTitle.append("Slight Hinting"); break; case SkFontHinting::kNormal: paintTitle.append("Normal Hinting"); break; case SkFontHinting::kFull: paintTitle.append("Full Hinting"); break; } } paintTitle.done(); switch (fColorMode) { case ColorMode::kLegacy: title.append(" Legacy 8888"); break; case ColorMode::kColorManaged8888: title.append(" ColorManaged 8888"); break; case ColorMode::kColorManagedF16: title.append(" ColorManaged F16"); break; case ColorMode::kColorManagedF16Norm: title.append(" ColorManaged F16 Norm"); break; } if (ColorMode::kLegacy != fColorMode) { int curPrimaries = -1; for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) { if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) { curPrimaries = i; break; } } title.appendf(" %s Gamma %f", curPrimaries >= 0 ? gNamedPrimaries[curPrimaries].fName : "Custom", fColorSpaceTransferFn.g); } const DisplayParams& params = fWindow->getRequestedDisplayParams(); if (fDisplayOverrides.fSurfaceProps.fPixelGeometry) { switch (params.fSurfaceProps.pixelGeometry()) { case kUnknown_SkPixelGeometry: title.append( " Flat"); break; case kRGB_H_SkPixelGeometry: title.append( " RGB"); break; case kBGR_H_SkPixelGeometry: title.append( " BGR"); break; case kRGB_V_SkPixelGeometry: title.append( " RGBV"); break; case kBGR_V_SkPixelGeometry: title.append( " BGRV"); break; } } if (params.fSurfaceProps.isUseDeviceIndependentFonts()) { title.append(" DFT"); } title.append(" ["); title.append(kBackendTypeStrings[fBackendType]); int msaa = fWindow->sampleCount(); if (msaa > 1) { title.appendf(" MSAA: %i", msaa); } title.append("]"); GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers; if (GpuPathRenderers::kDefault != pr) { title.appendf(" [Path renderer: %s]", gPathRendererNames[pr].c_str()); } if (kPerspective_Real == fPerspectiveMode) { title.append(" Perpsective (Real)"); } else if (kPerspective_Fake == fPerspectiveMode) { title.append(" Perspective (Fake)"); } fWindow->setTitle(title.c_str()); } int Viewer::startupSlide() const { if (!FLAGS_slide.isEmpty()) { int count = fSlides.count(); for (int i = 0; i < count; i++) { if (fSlides[i]->getName().equals(FLAGS_slide[0])) { return i; } } fprintf(stderr, "Unknown slide \"%s\"\n", FLAGS_slide[0]); this->listNames(); } return 0; } void Viewer::listNames() const { SkDebugf("All Slides:\n"); for (const auto& slide : fSlides) { SkDebugf(" %s\n", slide->getName().c_str()); } } void Viewer::setCurrentSlide(int slide) { SkASSERT(slide >= 0 && slide < fSlides.count()); if (slide == fCurrentSlide) { return; } if (fCurrentSlide >= 0) { fSlides[fCurrentSlide]->unload(); } SkScalar scaleFactor = 1.0; if (fApplyBackingScale) { scaleFactor = fWindow->scaleFactor(); } fSlides[slide]->load(SkIntToScalar(fWindow->width()) / scaleFactor, SkIntToScalar(fWindow->height()) / scaleFactor); fCurrentSlide = slide; this->setupCurrentSlide(); } void Viewer::setupCurrentSlide() { if (fCurrentSlide >= 0) { // prepare dimensions for image slides fGesture.resetTouchState(); fDefaultMatrix.reset(); const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height()); const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height()); // Start with a matrix that scales the slide to the available screen space if (fWindow->scaleContentToFit()) { if (windowRect.width() > 0 && windowRect.height() > 0) { fDefaultMatrix = SkMatrix::RectToRect(slideBounds, windowRect, SkMatrix::kStart_ScaleToFit); } } // Prevent the user from dragging content so far outside the window they can't find it again fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix()); this->updateTitle(); this->updateUIState(); fStatsLayer.resetMeasurements(); fWindow->inval(); } } #define MAX_ZOOM_LEVEL 8.0f #define MIN_ZOOM_LEVEL -8.0f void Viewer::changeZoomLevel(float delta) { fZoomLevel += delta; fZoomLevel = SkTPin(fZoomLevel, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL); this->preTouchMatrixChanged(); } void Viewer::preTouchMatrixChanged() { // Update the trans limit as the transform changes. const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height()); const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height()); fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix()); } SkMatrix Viewer::computePerspectiveMatrix() { SkScalar w = fWindow->width(), h = fWindow->height(); SkPoint orthoPts[4] = { { 0, 0 }, { w, 0 }, { 0, h }, { w, h } }; SkPoint perspPts[4] = { { fPerspectivePoints[0].fX * w, fPerspectivePoints[0].fY * h }, { fPerspectivePoints[1].fX * w, fPerspectivePoints[1].fY * h }, { fPerspectivePoints[2].fX * w, fPerspectivePoints[2].fY * h }, { fPerspectivePoints[3].fX * w, fPerspectivePoints[3].fY * h } }; SkMatrix m; m.setPolyToPoly(orthoPts, perspPts, 4); return m; } SkMatrix Viewer::computePreTouchMatrix() { SkMatrix m = fDefaultMatrix; SkScalar zoomScale = exp(fZoomLevel); if (fApplyBackingScale) { zoomScale *= fWindow->scaleFactor(); } m.preTranslate((fOffset.x() - 0.5f) * 2.0f, (fOffset.y() - 0.5f) * 2.0f); m.preScale(zoomScale, zoomScale); const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); m.preRotate(fRotation, slideSize.width() * 0.5f, slideSize.height() * 0.5f); if (kPerspective_Real == fPerspectiveMode) { SkMatrix persp = this->computePerspectiveMatrix(); m.postConcat(persp); } return m; } SkMatrix Viewer::computeMatrix() { SkMatrix m = fGesture.localM(); m.preConcat(fGesture.globalM()); m.preConcat(this->computePreTouchMatrix()); return m; } void Viewer::setBackend(sk_app::Window::BackendType backendType) { fPersistentCache.reset(); fCachedShaders.reset(); fBackendType = backendType; // The active context is going away in 'detach' for(auto& slide : fSlides) { slide->gpuTeardown(); } fWindow->detach(); #if defined(SK_BUILD_FOR_WIN) // Switching between OpenGL, Vulkan, and ANGLE in the same window is problematic at this point // on Windows, so we just delete the window and recreate it. DisplayParams params = fWindow->getRequestedDisplayParams(); delete fWindow; fWindow = Window::CreateNativeWindow(nullptr); // re-register callbacks fCommands.attach(fWindow); fWindow->pushLayer(this); fWindow->pushLayer(&fStatsLayer); fWindow->pushLayer(&fImGuiLayer); // Don't allow the window to re-attach. If we're in MSAA mode, the params we grabbed above // will still include our correct sample count. But the re-created fWindow will lose that // information. On Windows, we need to re-create the window when changing sample count, // so we'll incorrectly detect that situation, then re-initialize the window in GL mode, // rendering this tear-down step pointless (and causing the Vulkan window context to fail // as if we had never changed windows at all). fWindow->setRequestedDisplayParams(params, false); #endif fWindow->attach(backend_type_for_window(fBackendType)); } void Viewer::setColorMode(ColorMode colorMode) { fColorMode = colorMode; this->updateTitle(); fWindow->inval(); } class OveridePaintFilterCanvas : public SkPaintFilterCanvas { public: OveridePaintFilterCanvas(SkCanvas* canvas, SkPaint* paint, Viewer::SkPaintFields* pfields, SkFont* font, Viewer::SkFontFields* ffields) : SkPaintFilterCanvas(canvas), fPaint(paint), fPaintOverrides(pfields), fFont(font), fFontOverrides(ffields) { } const SkTextBlob* filterTextBlob(const SkPaint& paint, const SkTextBlob* blob, sk_sp* cache) { bool blobWillChange = false; for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) { SkTCopyOnFirstWrite filteredFont(it.font()); bool shouldDraw = this->filterFont(&filteredFont); if (it.font() != *filteredFont || !shouldDraw) { blobWillChange = true; break; } } if (!blobWillChange) { return blob; } SkTextBlobBuilder builder; for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) { SkTCopyOnFirstWrite filteredFont(it.font()); bool shouldDraw = this->filterFont(&filteredFont); if (!shouldDraw) { continue; } SkFont font = *filteredFont; const SkTextBlobBuilder::RunBuffer& runBuffer = it.positioning() == SkTextBlobRunIterator::kDefault_Positioning ? builder.allocRunText(font, it.glyphCount(), it.offset().x(),it.offset().y(), it.textSize()) : it.positioning() == SkTextBlobRunIterator::kHorizontal_Positioning ? builder.allocRunTextPosH(font, it.glyphCount(), it.offset().y(), it.textSize()) : it.positioning() == SkTextBlobRunIterator::kFull_Positioning ? builder.allocRunTextPos(font, it.glyphCount(), it.textSize()) : it.positioning() == SkTextBlobRunIterator::kRSXform_Positioning ? builder.allocRunTextRSXform(font, it.glyphCount(), it.textSize()) : (SkASSERT_RELEASE(false), SkTextBlobBuilder::RunBuffer()); uint32_t glyphCount = it.glyphCount(); if (it.glyphs()) { size_t glyphSize = sizeof(decltype(*it.glyphs())); memcpy(runBuffer.glyphs, it.glyphs(), glyphCount * glyphSize); } if (it.pos()) { size_t posSize = sizeof(decltype(*it.pos())); unsigned posPerGlyph = it.scalarsPerGlyph(); memcpy(runBuffer.pos, it.pos(), glyphCount * posPerGlyph * posSize); } if (it.text()) { size_t textSize = sizeof(decltype(*it.text())); uint32_t textCount = it.textSize(); memcpy(runBuffer.utf8text, it.text(), textCount * textSize); } if (it.clusters()) { size_t clusterSize = sizeof(decltype(*it.clusters())); memcpy(runBuffer.clusters, it.clusters(), glyphCount * clusterSize); } } *cache = builder.make(); return cache->get(); } void onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint) override { sk_sp cache; this->SkPaintFilterCanvas::onDrawTextBlob( this->filterTextBlob(paint, blob, &cache), x, y, paint); } bool filterFont(SkTCopyOnFirstWrite* font) const { if (fFontOverrides->fSize) { font->writable()->setSize(fFont->getSize()); } if (fFontOverrides->fScaleX) { font->writable()->setScaleX(fFont->getScaleX()); } if (fFontOverrides->fSkewX) { font->writable()->setSkewX(fFont->getSkewX()); } if (fFontOverrides->fHinting) { font->writable()->setHinting(fFont->getHinting()); } if (fFontOverrides->fEdging) { font->writable()->setEdging(fFont->getEdging()); } if (fFontOverrides->fEmbolden) { font->writable()->setEmbolden(fFont->isEmbolden()); } if (fFontOverrides->fBaselineSnap) { font->writable()->setBaselineSnap(fFont->isBaselineSnap()); } if (fFontOverrides->fLinearMetrics) { font->writable()->setLinearMetrics(fFont->isLinearMetrics()); } if (fFontOverrides->fSubpixel) { font->writable()->setSubpixel(fFont->isSubpixel()); } if (fFontOverrides->fEmbeddedBitmaps) { font->writable()->setEmbeddedBitmaps(fFont->isEmbeddedBitmaps()); } if (fFontOverrides->fForceAutoHinting) { font->writable()->setForceAutoHinting(fFont->isForceAutoHinting()); } return true; } bool onFilter(SkPaint& paint) const override { if (fPaintOverrides->fAntiAlias) { paint.setAntiAlias(fPaint->isAntiAlias()); } if (fPaintOverrides->fDither) { paint.setDither(fPaint->isDither()); } if (fPaintOverrides->fStyle) { paint.setStyle(fPaint->getStyle()); } if (fPaintOverrides->fWidth) { paint.setStrokeWidth(fPaint->getStrokeWidth()); } if (fPaintOverrides->fMiterLimit) { paint.setStrokeMiter(fPaint->getStrokeMiter()); } if (fPaintOverrides->fCapType) { paint.setStrokeCap(fPaint->getStrokeCap()); } if (fPaintOverrides->fJoinType) { paint.setStrokeJoin(fPaint->getStrokeJoin()); } if (fPaintOverrides->fForceRuntimeBlend) { if (skstd::optional mode = paint.asBlendMode()) { paint.setBlender(GetRuntimeBlendForBlendMode(*mode)); } } return true; } SkPaint* fPaint; Viewer::SkPaintFields* fPaintOverrides; SkFont* fFont; Viewer::SkFontFields* fFontOverrides; }; void Viewer::drawSlide(SkSurface* surface) { if (fCurrentSlide < 0) { return; } SkAutoCanvasRestore autorestore(surface->getCanvas(), false); // By default, we render directly into the window's surface/canvas SkSurface* slideSurface = surface; SkCanvas* slideCanvas = surface->getCanvas(); fLastImage.reset(); // If we're in any of the color managed modes, construct the color space we're going to use sk_sp colorSpace = nullptr; if (ColorMode::kLegacy != fColorMode) { skcms_Matrix3x3 toXYZ; SkAssertResult(fColorSpacePrimaries.toXYZD50(&toXYZ)); colorSpace = SkColorSpace::MakeRGB(fColorSpaceTransferFn, toXYZ); } if (fSaveToSKP) { SkPictureRecorder recorder; SkCanvas* recorderCanvas = recorder.beginRecording( SkRect::Make(fSlides[fCurrentSlide]->getDimensions())); fSlides[fCurrentSlide]->draw(recorderCanvas); sk_sp picture(recorder.finishRecordingAsPicture()); SkFILEWStream stream("sample_app.skp"); picture->serialize(&stream); fSaveToSKP = false; } // Grab some things we'll need to make surfaces (for tiling or general offscreen rendering) SkColorType colorType; switch (fColorMode) { case ColorMode::kLegacy: case ColorMode::kColorManaged8888: colorType = kN32_SkColorType; break; case ColorMode::kColorManagedF16: colorType = kRGBA_F16_SkColorType; break; case ColorMode::kColorManagedF16Norm: colorType = kRGBA_F16Norm_SkColorType; break; } auto make_surface = [=](int w, int h) { SkSurfaceProps props(fWindow->getRequestedDisplayParams().fSurfaceProps); slideCanvas->getProps(&props); SkImageInfo info = SkImageInfo::Make(w, h, colorType, kPremul_SkAlphaType, colorSpace); return Window::kRaster_BackendType == this->fBackendType ? SkSurface::MakeRaster(info, &props) : slideCanvas->makeSurface(info, &props); }; // We need to render offscreen if we're... // ... in fake perspective or zooming (so we have a snapped copy of the results) // ... in any raster mode, because the window surface is actually GL // ... in any color managed mode, because we always make the window surface with no color space // ... or if the user explicitly requested offscreen rendering sk_sp offscreenSurface = nullptr; if (kPerspective_Fake == fPerspectiveMode || fShowZoomWindow || Window::kRaster_BackendType == fBackendType || colorSpace != nullptr || FLAGS_offscreen) { offscreenSurface = make_surface(fWindow->width(), fWindow->height()); slideSurface = offscreenSurface.get(); slideCanvas = offscreenSurface->getCanvas(); } SkPictureRecorder recorder; SkCanvas* recorderRestoreCanvas = nullptr; if (fDrawViaSerialize) { recorderRestoreCanvas = slideCanvas; slideCanvas = recorder.beginRecording( SkRect::Make(fSlides[fCurrentSlide]->getDimensions())); } int count = slideCanvas->save(); slideCanvas->clear(SK_ColorWHITE); // Time the painting logic of the slide fStatsLayer.beginTiming(fPaintTimer); if (fTiled) { int tileW = SkScalarCeilToInt(fWindow->width() * fTileScale.width()); int tileH = SkScalarCeilToInt(fWindow->height() * fTileScale.height()); for (int y = 0; y < fWindow->height(); y += tileH) { for (int x = 0; x < fWindow->width(); x += tileW) { SkAutoCanvasRestore acr(slideCanvas, true); slideCanvas->clipRect(SkRect::MakeXYWH(x, y, tileW, tileH)); fSlides[fCurrentSlide]->draw(slideCanvas); } } // Draw borders between tiles if (fDrawTileBoundaries) { SkPaint border; border.setColor(0x60FF00FF); border.setStyle(SkPaint::kStroke_Style); for (int y = 0; y < fWindow->height(); y += tileH) { for (int x = 0; x < fWindow->width(); x += tileW) { slideCanvas->drawRect(SkRect::MakeXYWH(x, y, tileW, tileH), border); } } } } else { slideCanvas->concat(this->computeMatrix()); if (kPerspective_Real == fPerspectiveMode) { slideCanvas->clipRect(SkRect::MakeWH(fWindow->width(), fWindow->height())); } OveridePaintFilterCanvas filterCanvas(slideCanvas, &fPaint, &fPaintOverrides, &fFont, &fFontOverrides); fSlides[fCurrentSlide]->draw(&filterCanvas); } fStatsLayer.endTiming(fPaintTimer); slideCanvas->restoreToCount(count); if (recorderRestoreCanvas) { sk_sp picture(recorder.finishRecordingAsPicture()); auto data = picture->serialize(); slideCanvas = recorderRestoreCanvas; slideCanvas->drawPicture(SkPicture::MakeFromData(data.get())); } // Force a flush so we can time that, too fStatsLayer.beginTiming(fFlushTimer); slideSurface->flushAndSubmit(); fStatsLayer.endTiming(fFlushTimer); // If we rendered offscreen, snap an image and push the results to the window's canvas if (offscreenSurface) { fLastImage = offscreenSurface->makeImageSnapshot(); SkCanvas* canvas = surface->getCanvas(); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); SkSamplingOptions sampling; int prePerspectiveCount = canvas->save(); if (kPerspective_Fake == fPerspectiveMode) { sampling = SkSamplingOptions({1.0f/3, 1.0f/3}); canvas->clear(SK_ColorWHITE); canvas->concat(this->computePerspectiveMatrix()); } canvas->drawImage(fLastImage, 0, 0, sampling, &paint); canvas->restoreToCount(prePerspectiveCount); } if (fShowSlideDimensions) { SkCanvas* canvas = surface->getCanvas(); SkAutoCanvasRestore acr(canvas, true); canvas->concat(this->computeMatrix()); SkRect r = SkRect::Make(fSlides[fCurrentSlide]->getDimensions()); SkPaint paint; paint.setColor(0x40FFFF00); canvas->drawRect(r, paint); } } void Viewer::onBackendCreated() { this->setupCurrentSlide(); fWindow->show(); } void Viewer::onPaint(SkSurface* surface) { this->drawSlide(surface); fCommands.drawHelp(surface->getCanvas()); this->drawImGui(); fLastImage.reset(); if (auto direct = fWindow->directContext()) { // Clean out cache items that haven't been used in more than 10 seconds. direct->performDeferredCleanup(std::chrono::seconds(10)); } } void Viewer::onResize(int width, int height) { if (fCurrentSlide >= 0) { SkScalar scaleFactor = 1.0; if (fApplyBackingScale) { scaleFactor = fWindow->scaleFactor(); } fSlides[fCurrentSlide]->resize(width / scaleFactor, height / scaleFactor); } } SkPoint Viewer::mapEvent(float x, float y) { const auto m = this->computeMatrix(); SkMatrix inv; SkAssertResult(m.invert(&inv)); return inv.mapXY(x, y); } bool Viewer::onTouch(intptr_t owner, skui::InputState state, float x, float y) { if (GestureDevice::kMouse == fGestureDevice) { return false; } const auto slidePt = this->mapEvent(x, y); if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, skui::ModifierKey::kNone)) { fWindow->inval(); return true; } void* castedOwner = reinterpret_cast(owner); switch (state) { case skui::InputState::kUp: { fGesture.touchEnd(castedOwner); #if defined(SK_BUILD_FOR_IOS) // TODO: move IOS swipe detection higher up into the platform code SkPoint dir; if (fGesture.isFling(&dir)) { // swiping left or right if (SkTAbs(dir.fX) > SkTAbs(dir.fY)) { if (dir.fX < 0) { this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0); } else { this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1); } } fGesture.reset(); } #endif break; } case skui::InputState::kDown: { fGesture.touchBegin(castedOwner, x, y); break; } case skui::InputState::kMove: { fGesture.touchMoved(castedOwner, x, y); break; } default: { // kLeft and kRight are only for swipes SkASSERT(false); break; } } fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kTouch : GestureDevice::kNone; fWindow->inval(); return true; } bool Viewer::onMouse(int x, int y, skui::InputState state, skui::ModifierKey modifiers) { if (GestureDevice::kTouch == fGestureDevice) { return false; } const auto slidePt = this->mapEvent(x, y); if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, modifiers)) { fWindow->inval(); return true; } switch (state) { case skui::InputState::kUp: { fGesture.touchEnd(nullptr); break; } case skui::InputState::kDown: { fGesture.touchBegin(nullptr, x, y); break; } case skui::InputState::kMove: { fGesture.touchMoved(nullptr, x, y); break; } default: { SkASSERT(false); // shouldn't see kRight or kLeft here break; } } fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kMouse : GestureDevice::kNone; if (state != skui::InputState::kMove || fGesture.isBeingTouched()) { fWindow->inval(); } return true; } bool Viewer::onFling(skui::InputState state) { if (skui::InputState::kRight == state) { this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1); return true; } else if (skui::InputState::kLeft == state) { this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0); return true; } return false; } bool Viewer::onPinch(skui::InputState state, float scale, float x, float y) { switch (state) { case skui::InputState::kDown: fGesture.startZoom(); return true; break; case skui::InputState::kMove: fGesture.updateZoom(scale, x, y, x, y); return true; break; case skui::InputState::kUp: fGesture.endZoom(); return true; break; default: SkASSERT(false); break; } return false; } static void ImGui_Primaries(SkColorSpacePrimaries* primaries, SkPaint* gamutPaint) { // The gamut image covers a (0.8 x 0.9) shaped region ImGui::DragCanvas dc(primaries, { 0.0f, 0.9f }, { 0.8f, 0.0f }); // Background image. Only draw a subset of the image, to avoid the regions less than zero. // Simplifes re-mapping math, clipping behavior, and increases resolution in the useful area. // Magic numbers are pixel locations of the origin and upper-right corner. dc.fDrawList->AddImage(gamutPaint, dc.fPos, ImVec2(dc.fPos.x + dc.fSize.x, dc.fPos.y + dc.fSize.y), ImVec2(242, 61), ImVec2(1897, 1922)); dc.dragPoint((SkPoint*)(&primaries->fRX), true, 0xFF000040); dc.dragPoint((SkPoint*)(&primaries->fGX), true, 0xFF004000); dc.dragPoint((SkPoint*)(&primaries->fBX), true, 0xFF400000); dc.dragPoint((SkPoint*)(&primaries->fWX), true); dc.fDrawList->AddPolyline(dc.fScreenPoints.begin(), 3, 0xFFFFFFFF, true, 1.5f); } static bool ImGui_DragLocation(SkPoint* pt) { ImGui::DragCanvas dc(pt); dc.fillColor(IM_COL32(0, 0, 0, 128)); dc.dragPoint(pt); return dc.fDragging; } static bool ImGui_DragQuad(SkPoint* pts) { ImGui::DragCanvas dc(pts); dc.fillColor(IM_COL32(0, 0, 0, 128)); for (int i = 0; i < 4; ++i) { dc.dragPoint(pts + i); } dc.fDrawList->AddLine(dc.fScreenPoints[0], dc.fScreenPoints[1], 0xFFFFFFFF); dc.fDrawList->AddLine(dc.fScreenPoints[1], dc.fScreenPoints[3], 0xFFFFFFFF); dc.fDrawList->AddLine(dc.fScreenPoints[3], dc.fScreenPoints[2], 0xFFFFFFFF); dc.fDrawList->AddLine(dc.fScreenPoints[2], dc.fScreenPoints[0], 0xFFFFFFFF); return dc.fDragging; } static SkSL::String build_sksl_highlight_shader() { return SkSL::String("out half4 sk_FragColor;\n" "void main() { sk_FragColor = half4(1, 0, 1, 0.5); }"); } static SkSL::String build_metal_highlight_shader(const SkSL::String& inShader) { // Metal fragment shaders need a lot of non-trivial boilerplate that we don't want to recompute // here. So keep all shader code, but right before `return *_out;`, swap out the sk_FragColor. size_t pos = inShader.rfind("return *_out;\n"); if (pos == std::string::npos) { return inShader; } SkSL::String replacementShader = inShader; replacementShader.insert(pos, "_out->sk_FragColor = float4(1.0, 0.0, 1.0, 0.5); "); return replacementShader; } static SkSL::String build_glsl_highlight_shader(const GrShaderCaps& shaderCaps) { const char* versionDecl = shaderCaps.versionDeclString(); SkSL::String highlight = versionDecl ? versionDecl : ""; if (shaderCaps.usesPrecisionModifiers()) { highlight.append("precision mediump float;\n"); } highlight.appendf("out vec4 sk_FragColor;\n" "void main() { sk_FragColor = vec4(1, 0, 1, 0.5); }"); return highlight; } void Viewer::drawImGui() { // Support drawing the ImGui demo window. Superfluous, but gives a good idea of what's possible if (fShowImGuiTestWindow) { ImGui::ShowDemoWindow(&fShowImGuiTestWindow); } if (fShowImGuiDebugWindow) { // We have some dynamic content that sizes to fill available size. If the scroll bar isn't // always visible, we can end up in a layout feedback loop. ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver); DisplayParams params = fWindow->getRequestedDisplayParams(); bool paramsChanged = false; auto ctx = fWindow->directContext(); if (ImGui::Begin("Tools", &fShowImGuiDebugWindow, ImGuiWindowFlags_AlwaysVerticalScrollbar)) { if (ImGui::CollapsingHeader("Backend")) { int newBackend = static_cast(fBackendType); ImGui::RadioButton("Raster", &newBackend, sk_app::Window::kRaster_BackendType); ImGui::SameLine(); ImGui::RadioButton("OpenGL", &newBackend, sk_app::Window::kNativeGL_BackendType); #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) ImGui::SameLine(); ImGui::RadioButton("ANGLE", &newBackend, sk_app::Window::kANGLE_BackendType); #endif #if defined(SK_DAWN) ImGui::SameLine(); ImGui::RadioButton("Dawn", &newBackend, sk_app::Window::kDawn_BackendType); #endif #if defined(SK_VULKAN) && !defined(SK_BUILD_FOR_MAC) ImGui::SameLine(); ImGui::RadioButton("Vulkan", &newBackend, sk_app::Window::kVulkan_BackendType); #endif #if defined(SK_METAL) ImGui::SameLine(); ImGui::RadioButton("Metal", &newBackend, sk_app::Window::kMetal_BackendType); #endif #if defined(SK_DIRECT3D) ImGui::SameLine(); ImGui::RadioButton("Direct3D", &newBackend, sk_app::Window::kDirect3D_BackendType); #endif if (newBackend != fBackendType) { fDeferredActions.push_back([=]() { this->setBackend(static_cast(newBackend)); }); } bool* wire = ¶ms.fGrContextOptions.fWireframeMode; if (ctx && ImGui::Checkbox("Wireframe Mode", wire)) { paramsChanged = true; } bool* reducedShaders = ¶ms.fGrContextOptions.fReducedShaderVariations; if (ctx && ImGui::Checkbox("Reduced shaders", reducedShaders)) { paramsChanged = true; } if (ctx) { // Determine the context's max sample count for MSAA radio buttons. int sampleCount = fWindow->sampleCount(); int maxMSAA = (fBackendType != sk_app::Window::kRaster_BackendType) ? ctx->maxSurfaceSampleCountForColorType(kRGBA_8888_SkColorType) : 1; // Only display the MSAA radio buttons when there are options above 1x MSAA. if (maxMSAA >= 4) { ImGui::Text("MSAA: "); for (int curMSAA = 1; curMSAA <= maxMSAA; curMSAA *= 2) { // 2x MSAA works, but doesn't offer much of a visual improvement, so we // don't show it in the list. if (curMSAA == 2) { continue; } ImGui::SameLine(); ImGui::RadioButton(SkStringPrintf("%d", curMSAA).c_str(), &sampleCount, curMSAA); } } if (sampleCount != params.fMSAASampleCount) { params.fMSAASampleCount = sampleCount; paramsChanged = true; } } int pixelGeometryIdx = 0; if (fDisplayOverrides.fSurfaceProps.fPixelGeometry) { pixelGeometryIdx = params.fSurfaceProps.pixelGeometry() + 1; } if (ImGui::Combo("Pixel Geometry", &pixelGeometryIdx, "Default\0Flat\0RGB\0BGR\0RGBV\0BGRV\0\0")) { uint32_t flags = params.fSurfaceProps.flags(); if (pixelGeometryIdx == 0) { fDisplayOverrides.fSurfaceProps.fPixelGeometry = false; SkPixelGeometry pixelGeometry = fDisplay.fSurfaceProps.pixelGeometry(); params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry); } else { fDisplayOverrides.fSurfaceProps.fPixelGeometry = true; SkPixelGeometry pixelGeometry = SkTo(pixelGeometryIdx - 1); params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry); } paramsChanged = true; } bool useDFT = params.fSurfaceProps.isUseDeviceIndependentFonts(); if (ImGui::Checkbox("DFT", &useDFT)) { uint32_t flags = params.fSurfaceProps.flags(); if (useDFT) { flags |= SkSurfaceProps::kUseDeviceIndependentFonts_Flag; } else { flags &= ~SkSurfaceProps::kUseDeviceIndependentFonts_Flag; } SkPixelGeometry pixelGeometry = params.fSurfaceProps.pixelGeometry(); params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry); paramsChanged = true; } if (ImGui::TreeNode("Path Renderers")) { GpuPathRenderers prevPr = params.fGrContextOptions.fGpuPathRenderers; auto prButton = [&](GpuPathRenderers x) { if (ImGui::RadioButton(gPathRendererNames[x].c_str(), prevPr == x)) { if (x != params.fGrContextOptions.fGpuPathRenderers) { params.fGrContextOptions.fGpuPathRenderers = x; paramsChanged = true; } } }; if (!ctx) { ImGui::RadioButton("Software", true); } else { const auto* caps = ctx->priv().caps(); prButton(GpuPathRenderers::kDefault); if (fWindow->sampleCount() > 1 || FLAGS_dmsaa) { if (GrTessellationPathRenderer::IsSupported(*caps)) { prButton(GpuPathRenderers::kTessellation); } } if (1 == fWindow->sampleCount()) { prButton(GpuPathRenderers::kSmall); } prButton(GpuPathRenderers::kTriangulating); prButton(GpuPathRenderers::kNone); } ImGui::TreePop(); } } if (ImGui::CollapsingHeader("Tiling")) { ImGui::Checkbox("Enable", &fTiled); ImGui::Checkbox("Draw Boundaries", &fDrawTileBoundaries); ImGui::SliderFloat("Horizontal", &fTileScale.fWidth, 0.1f, 1.0f); ImGui::SliderFloat("Vertical", &fTileScale.fHeight, 0.1f, 1.0f); } if (ImGui::CollapsingHeader("Transform")) { if (ImGui::Checkbox("Apply Backing Scale", &fApplyBackingScale)) { this->preTouchMatrixChanged(); this->onResize(fWindow->width(), fWindow->height()); paramsChanged = true; } float zoom = fZoomLevel; if (ImGui::SliderFloat("Zoom", &zoom, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) { fZoomLevel = zoom; this->preTouchMatrixChanged(); paramsChanged = true; } float deg = fRotation; if (ImGui::SliderFloat("Rotate", °, -30, 360, "%.3f deg")) { fRotation = deg; this->preTouchMatrixChanged(); paramsChanged = true; } if (ImGui::CollapsingHeader("Subpixel offset", ImGuiTreeNodeFlags_NoTreePushOnOpen)) { if (ImGui_DragLocation(&fOffset)) { this->preTouchMatrixChanged(); paramsChanged = true; } } else if (fOffset != SkVector{0.5f, 0.5f}) { this->preTouchMatrixChanged(); paramsChanged = true; fOffset = {0.5f, 0.5f}; } int perspectiveMode = static_cast(fPerspectiveMode); if (ImGui::Combo("Perspective", &perspectiveMode, "Off\0Real\0Fake\0\0")) { fPerspectiveMode = static_cast(perspectiveMode); this->preTouchMatrixChanged(); paramsChanged = true; } if (perspectiveMode != kPerspective_Off && ImGui_DragQuad(fPerspectivePoints)) { this->preTouchMatrixChanged(); paramsChanged = true; } } if (ImGui::CollapsingHeader("Paint")) { int aliasIdx = 0; if (fPaintOverrides.fAntiAlias) { aliasIdx = SkTo(fPaintOverrides.fAntiAliasState) + 1; } if (ImGui::Combo("Anti-Alias", &aliasIdx, "Default\0Alias\0Normal\0AnalyticAAEnabled\0AnalyticAAForced\0\0")) { gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA; gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA; if (aliasIdx == 0) { fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fAntiAlias = false; } else { fPaintOverrides.fAntiAlias = true; fPaintOverrides.fAntiAliasState = SkTo(aliasIdx-1); fPaint.setAntiAlias(aliasIdx > 1); switch (fPaintOverrides.fAntiAliasState) { case SkPaintFields::AntiAliasState::Alias: break; case SkPaintFields::AntiAliasState::Normal: break; case SkPaintFields::AntiAliasState::AnalyticAAEnabled: gSkUseAnalyticAA = true; gSkForceAnalyticAA = false; break; case SkPaintFields::AntiAliasState::AnalyticAAForced: gSkUseAnalyticAA = gSkForceAnalyticAA = true; break; } } paramsChanged = true; } auto paintFlag = [this, ¶msChanged](const char* label, const char* items, bool SkPaintFields::* flag, bool (SkPaint::* isFlag)() const, void (SkPaint::* setFlag)(bool) ) { int itemIndex = 0; if (fPaintOverrides.*flag) { itemIndex = (fPaint.*isFlag)() ? 2 : 1; } if (ImGui::Combo(label, &itemIndex, items)) { if (itemIndex == 0) { fPaintOverrides.*flag = false; } else { fPaintOverrides.*flag = true; (fPaint.*setFlag)(itemIndex == 2); } paramsChanged = true; } }; paintFlag("Dither", "Default\0No Dither\0Dither\0\0", &SkPaintFields::fDither, &SkPaint::isDither, &SkPaint::setDither); int styleIdx = 0; if (fPaintOverrides.fStyle) { styleIdx = SkTo(fPaint.getStyle()) + 1; } if (ImGui::Combo("Style", &styleIdx, "Default\0Fill\0Stroke\0Stroke and Fill\0\0")) { if (styleIdx == 0) { fPaintOverrides.fStyle = false; fPaint.setStyle(SkPaint::kFill_Style); } else { fPaint.setStyle(SkTo(styleIdx - 1)); fPaintOverrides.fStyle = true; } paramsChanged = true; } ImGui::Checkbox("Force Runtime Blends", &fPaintOverrides.fForceRuntimeBlend); ImGui::Checkbox("Override Stroke Width", &fPaintOverrides.fWidth); if (fPaintOverrides.fWidth) { float width = fPaint.getStrokeWidth(); if (ImGui::SliderFloat("Stroke Width", &width, 0, 20)) { fPaint.setStrokeWidth(width); paramsChanged = true; } } ImGui::Checkbox("Override Miter Limit", &fPaintOverrides.fMiterLimit); if (fPaintOverrides.fMiterLimit) { float miterLimit = fPaint.getStrokeMiter(); if (ImGui::SliderFloat("Miter Limit", &miterLimit, 0, 20)) { fPaint.setStrokeMiter(miterLimit); paramsChanged = true; } } int capIdx = 0; if (fPaintOverrides.fCapType) { capIdx = SkTo(fPaint.getStrokeCap()) + 1; } if (ImGui::Combo("Cap Type", &capIdx, "Default\0Butt\0Round\0Square\0\0")) { if (capIdx == 0) { fPaintOverrides.fCapType = false; fPaint.setStrokeCap(SkPaint::kDefault_Cap); } else { fPaint.setStrokeCap(SkTo(capIdx - 1)); fPaintOverrides.fCapType = true; } paramsChanged = true; } int joinIdx = 0; if (fPaintOverrides.fJoinType) { joinIdx = SkTo(fPaint.getStrokeJoin()) + 1; } if (ImGui::Combo("Join Type", &joinIdx, "Default\0Miter\0Round\0Bevel\0\0")) { if (joinIdx == 0) { fPaintOverrides.fJoinType = false; fPaint.setStrokeJoin(SkPaint::kDefault_Join); } else { fPaint.setStrokeJoin(SkTo(joinIdx - 1)); fPaintOverrides.fJoinType = true; } paramsChanged = true; } } if (ImGui::CollapsingHeader("Font")) { int hintingIdx = 0; if (fFontOverrides.fHinting) { hintingIdx = SkTo(fFont.getHinting()) + 1; } if (ImGui::Combo("Hinting", &hintingIdx, "Default\0None\0Slight\0Normal\0Full\0\0")) { if (hintingIdx == 0) { fFontOverrides.fHinting = false; fFont.setHinting(SkFontHinting::kNone); } else { fFont.setHinting(SkTo(hintingIdx - 1)); fFontOverrides.fHinting = true; } paramsChanged = true; } auto fontFlag = [this, ¶msChanged](const char* label, const char* items, bool SkFontFields::* flag, bool (SkFont::* isFlag)() const, void (SkFont::* setFlag)(bool) ) { int itemIndex = 0; if (fFontOverrides.*flag) { itemIndex = (fFont.*isFlag)() ? 2 : 1; } if (ImGui::Combo(label, &itemIndex, items)) { if (itemIndex == 0) { fFontOverrides.*flag = false; } else { fFontOverrides.*flag = true; (fFont.*setFlag)(itemIndex == 2); } paramsChanged = true; } }; fontFlag("Fake Bold Glyphs", "Default\0No Fake Bold\0Fake Bold\0\0", &SkFontFields::fEmbolden, &SkFont::isEmbolden, &SkFont::setEmbolden); fontFlag("Baseline Snapping", "Default\0No Baseline Snapping\0Baseline Snapping\0\0", &SkFontFields::fBaselineSnap, &SkFont::isBaselineSnap, &SkFont::setBaselineSnap); fontFlag("Linear Text", "Default\0No Linear Text\0Linear Text\0\0", &SkFontFields::fLinearMetrics, &SkFont::isLinearMetrics, &SkFont::setLinearMetrics); fontFlag("Subpixel Position Glyphs", "Default\0Pixel Text\0Subpixel Text\0\0", &SkFontFields::fSubpixel, &SkFont::isSubpixel, &SkFont::setSubpixel); fontFlag("Embedded Bitmap Text", "Default\0No Embedded Bitmaps\0Embedded Bitmaps\0\0", &SkFontFields::fEmbeddedBitmaps, &SkFont::isEmbeddedBitmaps, &SkFont::setEmbeddedBitmaps); fontFlag("Force Auto-Hinting", "Default\0No Force Auto-Hinting\0Force Auto-Hinting\0\0", &SkFontFields::fForceAutoHinting, &SkFont::isForceAutoHinting, &SkFont::setForceAutoHinting); int edgingIdx = 0; if (fFontOverrides.fEdging) { edgingIdx = SkTo(fFont.getEdging()) + 1; } if (ImGui::Combo("Edging", &edgingIdx, "Default\0Alias\0Antialias\0Subpixel Antialias\0\0")) { if (edgingIdx == 0) { fFontOverrides.fEdging = false; fFont.setEdging(SkFont::Edging::kAlias); } else { fFont.setEdging(SkTo(edgingIdx-1)); fFontOverrides.fEdging = true; } paramsChanged = true; } ImGui::Checkbox("Override Size", &fFontOverrides.fSize); if (fFontOverrides.fSize) { ImGui::DragFloat2("TextRange", fFontOverrides.fSizeRange, 0.001f, -10.0f, 300.0f, "%.6f", 2.0f); float textSize = fFont.getSize(); if (ImGui::DragFloat("TextSize", &textSize, 0.001f, fFontOverrides.fSizeRange[0], fFontOverrides.fSizeRange[1], "%.6f", 2.0f)) { fFont.setSize(textSize); paramsChanged = true; } } ImGui::Checkbox("Override ScaleX", &fFontOverrides.fScaleX); if (fFontOverrides.fScaleX) { float scaleX = fFont.getScaleX(); if (ImGui::SliderFloat("ScaleX", &scaleX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) { fFont.setScaleX(scaleX); paramsChanged = true; } } ImGui::Checkbox("Override SkewX", &fFontOverrides.fSkewX); if (fFontOverrides.fSkewX) { float skewX = fFont.getSkewX(); if (ImGui::SliderFloat("SkewX", &skewX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) { fFont.setSkewX(skewX); paramsChanged = true; } } } { SkMetaData controls; if (fSlides[fCurrentSlide]->onGetControls(&controls)) { if (ImGui::CollapsingHeader("Current Slide")) { SkMetaData::Iter iter(controls); const char* name; SkMetaData::Type type; int count; while ((name = iter.next(&type, &count)) != nullptr) { if (type == SkMetaData::kScalar_Type) { float val[3]; SkASSERT(count == 3); controls.findScalars(name, &count, val); if (ImGui::SliderFloat(name, &val[0], val[1], val[2])) { controls.setScalars(name, 3, val); } } else if (type == SkMetaData::kBool_Type) { bool val; SkASSERT(count == 1); controls.findBool(name, &val); if (ImGui::Checkbox(name, &val)) { controls.setBool(name, val); } } } fSlides[fCurrentSlide]->onSetControls(controls); } } } if (fShowSlidePicker) { ImGui::SetNextTreeNodeOpen(true); } if (ImGui::CollapsingHeader("Slide")) { static ImGuiTextFilter filter; static ImVector filteredSlideNames; static ImVector filteredSlideIndices; if (fShowSlidePicker) { ImGui::SetKeyboardFocusHere(); fShowSlidePicker = false; } filter.Draw(); filteredSlideNames.clear(); filteredSlideIndices.clear(); int filteredIndex = 0; for (int i = 0; i < fSlides.count(); ++i) { const char* slideName = fSlides[i]->getName().c_str(); if (filter.PassFilter(slideName) || i == fCurrentSlide) { if (i == fCurrentSlide) { filteredIndex = filteredSlideIndices.size(); } filteredSlideNames.push_back(slideName); filteredSlideIndices.push_back(i); } } if (ImGui::ListBox("", &filteredIndex, filteredSlideNames.begin(), filteredSlideNames.size(), 20)) { this->setCurrentSlide(filteredSlideIndices[filteredIndex]); } } if (ImGui::CollapsingHeader("Color Mode")) { ColorMode newMode = fColorMode; auto cmButton = [&](ColorMode mode, const char* label) { if (ImGui::RadioButton(label, mode == fColorMode)) { newMode = mode; } }; cmButton(ColorMode::kLegacy, "Legacy 8888"); cmButton(ColorMode::kColorManaged8888, "Color Managed 8888"); cmButton(ColorMode::kColorManagedF16, "Color Managed F16"); cmButton(ColorMode::kColorManagedF16Norm, "Color Managed F16 Norm"); if (newMode != fColorMode) { this->setColorMode(newMode); } // Pick from common gamuts: int primariesIdx = 4; // Default: Custom for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) { if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) { primariesIdx = i; break; } } // Let user adjust the gamma ImGui::SliderFloat("Gamma", &fColorSpaceTransferFn.g, 0.5f, 3.5f); if (ImGui::Combo("Primaries", &primariesIdx, "sRGB\0AdobeRGB\0P3\0Rec. 2020\0Custom\0\0")) { if (primariesIdx >= 0 && primariesIdx <= 3) { fColorSpacePrimaries = *gNamedPrimaries[primariesIdx].fPrimaries; } } // Allow direct editing of gamut ImGui_Primaries(&fColorSpacePrimaries, &fImGuiGamutPaint); } if (ImGui::CollapsingHeader("Animation")) { bool isPaused = AnimTimer::kPaused_State == fAnimTimer.state(); if (ImGui::Checkbox("Pause", &isPaused)) { fAnimTimer.togglePauseResume(); } float speed = fAnimTimer.getSpeed(); if (ImGui::DragFloat("Speed", &speed, 0.1f)) { fAnimTimer.setSpeed(speed); } } if (ImGui::CollapsingHeader("Shaders")) { bool sksl = params.fGrContextOptions.fShaderCacheStrategy == GrContextOptions::ShaderCacheStrategy::kSkSL; #if defined(SK_VULKAN) const bool isVulkan = fBackendType == sk_app::Window::kVulkan_BackendType; #else const bool isVulkan = false; #endif // To re-load shaders from the currently active programs, we flush all // caches on one frame, then set a flag to poll the cache on the next frame. static bool gLoadPending = false; if (gLoadPending) { auto collectShaders = [this](sk_sp key, sk_sp data, const SkString& description, int hitCount) { CachedShader& entry(fCachedShaders.push_back()); entry.fKey = key; SkMD5 hash; hash.write(key->bytes(), key->size()); SkMD5::Digest digest = hash.finish(); for (int i = 0; i < 16; ++i) { entry.fKeyString.appendf("%02x", digest.data[i]); } entry.fKeyDescription = description; SkReadBuffer reader(data->data(), data->size()); entry.fShaderType = GrPersistentCacheUtils::GetType(&reader); GrPersistentCacheUtils::UnpackCachedShaders(&reader, entry.fShader, entry.fInputs, kGrShaderTypeCount); }; fCachedShaders.reset(); fPersistentCache.foreach(collectShaders); gLoadPending = false; #if defined(SK_VULKAN) if (isVulkan && !sksl) { spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0); for (auto& entry : fCachedShaders) { for (int i = 0; i < kGrShaderTypeCount; ++i) { const SkSL::String& spirv(entry.fShader[i]); std::string disasm; tools.Disassemble((const uint32_t*)spirv.c_str(), spirv.size() / 4, &disasm); entry.fShader[i].assign(disasm); } } } #endif } // Defer actually doing the View/Apply logic so that we can trigger an Apply when we // start or finish hovering on a tree node in the list below: bool doView = ImGui::Button("View"); ImGui::SameLine(); bool doApply = ImGui::Button("Apply Changes"); ImGui::SameLine(); bool doDump = ImGui::Button("Dump SkSL to resources/sksl/"); int newOptLevel = fOptLevel; ImGui::RadioButton("SkSL", &newOptLevel, kShaderOptLevel_Source); ImGui::SameLine(); ImGui::RadioButton("Compile", &newOptLevel, kShaderOptLevel_Compile); ImGui::SameLine(); ImGui::RadioButton("Optimize", &newOptLevel, kShaderOptLevel_Optimize); ImGui::SameLine(); ImGui::RadioButton("Inline", &newOptLevel, kShaderOptLevel_Inline); // If we are changing the compile mode, we want to reset the cache and redo // everything. if (doDump || newOptLevel != fOptLevel) { sksl = doDump || (newOptLevel == kShaderOptLevel_Source); fOptLevel = (ShaderOptLevel)newOptLevel; switch (fOptLevel) { case kShaderOptLevel_Source: Compiler::EnableOptimizer(OverrideFlag::kDefault); Compiler::EnableInliner(OverrideFlag::kDefault); break; case kShaderOptLevel_Compile: Compiler::EnableOptimizer(OverrideFlag::kOff); Compiler::EnableInliner(OverrideFlag::kOff); break; case kShaderOptLevel_Optimize: Compiler::EnableOptimizer(OverrideFlag::kOn); Compiler::EnableInliner(OverrideFlag::kOff); break; case kShaderOptLevel_Inline: Compiler::EnableOptimizer(OverrideFlag::kOn); Compiler::EnableInliner(OverrideFlag::kOn); break; } params.fGrContextOptions.fShaderCacheStrategy = sksl ? GrContextOptions::ShaderCacheStrategy::kSkSL : GrContextOptions::ShaderCacheStrategy::kBackendSource; paramsChanged = true; doView = true; fDeferredActions.push_back([=]() { // Reset the cache. fPersistentCache.reset(); // Dump the cache once we have drawn a frame with it. if (doDump) { fDeferredActions.push_back([this]() { this->dumpShadersToResources(); }); } }); } ImGui::BeginChild("##ScrollingRegion"); for (auto& entry : fCachedShaders) { bool inTreeNode = ImGui::TreeNode(entry.fKeyString.c_str()); bool hovered = ImGui::IsItemHovered(); if (hovered != entry.fHovered) { // Force an Apply to patch the highlight shader in/out entry.fHovered = hovered; doApply = true; } if (inTreeNode) { auto stringBox = [](const char* label, std::string* str) { // Full width, and not too much space for each shader int lines = std::count(str->begin(), str->end(), '\n') + 2; ImVec2 boxSize(-1.0f, ImGui::GetTextLineHeight() * std::min(lines, 30)); ImGui::InputTextMultiline(label, str, boxSize); }; if (ImGui::TreeNode("Key")) { ImGui::TextWrapped("%s", entry.fKeyDescription.c_str()); ImGui::TreePop(); } stringBox("##VP", &entry.fShader[kVertex_GrShaderType]); stringBox("##FP", &entry.fShader[kFragment_GrShaderType]); ImGui::TreePop(); } } ImGui::EndChild(); if (doView) { fPersistentCache.reset(); ctx->priv().getGpu()->resetShaderCacheForTesting(); gLoadPending = true; } // We don't support updating SPIRV shaders. We could re-assemble them (with edits), // but I'm not sure anyone wants to do that. if (isVulkan && !sksl) { doApply = false; } if (doApply) { fPersistentCache.reset(); ctx->priv().getGpu()->resetShaderCacheForTesting(); for (auto& entry : fCachedShaders) { SkSL::String backup = entry.fShader[kFragment_GrShaderType]; if (entry.fHovered) { // The hovered item (if any) gets a special shader to make it // identifiable. SkSL::String& fragShader = entry.fShader[kFragment_GrShaderType]; switch (entry.fShaderType) { case SkSetFourByteTag('S', 'K', 'S', 'L'): { fragShader = build_sksl_highlight_shader(); break; } case SkSetFourByteTag('G', 'L', 'S', 'L'): { fragShader = build_glsl_highlight_shader( *ctx->priv().caps()->shaderCaps()); break; } case SkSetFourByteTag('M', 'S', 'L', ' '): { fragShader = build_metal_highlight_shader(fragShader); break; } } } auto data = GrPersistentCacheUtils::PackCachedShaders(entry.fShaderType, entry.fShader, entry.fInputs, kGrShaderTypeCount); fPersistentCache.store(*entry.fKey, *data, entry.fKeyDescription); entry.fShader[kFragment_GrShaderType] = backup; } } } } if (paramsChanged) { fDeferredActions.push_back([=]() { fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); }); } ImGui::End(); } if (gShaderErrorHandler.fErrors.count()) { ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver); ImGui::Begin("Shader Errors", nullptr, ImGuiWindowFlags_NoFocusOnAppearing); for (int i = 0; i < gShaderErrorHandler.fErrors.count(); ++i) { ImGui::TextWrapped("%s", gShaderErrorHandler.fErrors[i].c_str()); SkSL::String sksl(gShaderErrorHandler.fShaders[i].c_str()); GrShaderUtils::VisitLineByLine(sksl, [](int lineNumber, const char* lineText) { ImGui::TextWrapped("%4i\t%s\n", lineNumber, lineText); }); } ImGui::End(); gShaderErrorHandler.reset(); } if (fShowZoomWindow && fLastImage) { ImGui::SetNextWindowSize(ImVec2(200, 200), ImGuiCond_FirstUseEver); if (ImGui::Begin("Zoom", &fShowZoomWindow)) { static int zoomFactor = 8; if (ImGui::Button("<<")) { zoomFactor = std::max(zoomFactor / 2, 4); } ImGui::SameLine(); ImGui::Text("%2d", zoomFactor); ImGui::SameLine(); if (ImGui::Button(">>")) { zoomFactor = std::min(zoomFactor * 2, 32); } if (!fZoomWindowFixed) { ImVec2 mousePos = ImGui::GetMousePos(); fZoomWindowLocation = SkPoint::Make(mousePos.x, mousePos.y); } SkScalar x = fZoomWindowLocation.x(); SkScalar y = fZoomWindowLocation.y(); int xInt = SkScalarRoundToInt(x); int yInt = SkScalarRoundToInt(y); ImVec2 avail = ImGui::GetContentRegionAvail(); uint32_t pixel = 0; SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); auto dContext = fWindow->directContext(); if (fLastImage->readPixels(dContext, info, &pixel, info.minRowBytes(), xInt, yInt)) { ImGui::SameLine(); ImGui::Text("(X, Y): %d, %d RGBA: %X %X %X %X", xInt, yInt, SkGetPackedR32(pixel), SkGetPackedG32(pixel), SkGetPackedB32(pixel), SkGetPackedA32(pixel)); } fImGuiLayer.skiaWidget(avail, [=, lastImage = fLastImage](SkCanvas* c) { // Translate so the region of the image that's under the mouse cursor is centered // in the zoom canvas: c->scale(zoomFactor, zoomFactor); c->translate(avail.x * 0.5f / zoomFactor - x - 0.5f, avail.y * 0.5f / zoomFactor - y - 0.5f); c->drawImage(lastImage, 0, 0); SkPaint outline; outline.setStyle(SkPaint::kStroke_Style); c->drawRect(SkRect::MakeXYWH(x, y, 1, 1), outline); }); } ImGui::End(); } } void Viewer::dumpShadersToResources() { // Sort the list of cached shaders so we can maintain some minimal level of consistency. // It doesn't really matter, but it will keep files from switching places unpredictably. std::vector shaders; shaders.reserve(fCachedShaders.size()); for (const CachedShader& shader : fCachedShaders) { shaders.push_back(&shader); } std::sort(shaders.begin(), shaders.end(), [](const CachedShader* a, const CachedShader* b) { return std::tie(a->fShader[kFragment_GrShaderType], a->fShader[kVertex_GrShaderType]) < std::tie(b->fShader[kFragment_GrShaderType], b->fShader[kVertex_GrShaderType]); }); // Make the resources/sksl/SlideName/ directory. SkString directory = SkStringPrintf("%ssksl/%s", GetResourcePath().c_str(), fSlides[fCurrentSlide]->getName().c_str()); if (!sk_mkdir(directory.c_str())) { SkDEBUGFAILF("Unable to create directory '%s'", directory.c_str()); return; } int index = 0; for (const auto& entry : shaders) { SkString vertPath = SkStringPrintf("%s/Vertex_%02d.vert", directory.c_str(), index); FILE* vertFile = sk_fopen(vertPath.c_str(), kWrite_SkFILE_Flag); if (vertFile) { const SkSL::String& vertText = entry->fShader[kVertex_GrShaderType]; SkAssertResult(sk_fwrite(vertText.c_str(), vertText.size(), vertFile)); sk_fclose(vertFile); } else { SkDEBUGFAILF("Unable to write shader to path '%s'", vertPath.c_str()); } SkString fragPath = SkStringPrintf("%s/Fragment_%02d.frag", directory.c_str(), index); FILE* fragFile = sk_fopen(fragPath.c_str(), kWrite_SkFILE_Flag); if (fragFile) { const SkSL::String& fragText = entry->fShader[kFragment_GrShaderType]; SkAssertResult(sk_fwrite(fragText.c_str(), fragText.size(), fragFile)); sk_fclose(fragFile); } else { SkDEBUGFAILF("Unable to write shader to path '%s'", fragPath.c_str()); } ++index; } } void Viewer::onIdle() { SkTArray> actionsToRun; actionsToRun.swap(fDeferredActions); for (const auto& fn : actionsToRun) { fn(); } fStatsLayer.beginTiming(fAnimateTimer); fAnimTimer.updateTime(); bool animateWantsInval = fSlides[fCurrentSlide]->animate(fAnimTimer.nanos()); fStatsLayer.endTiming(fAnimateTimer); ImGuiIO& io = ImGui::GetIO(); // ImGui always has at least one "active" window, which is the default "Debug" window. It may // not be visible, though. So we need to redraw if there is at least one visible window, or // more than one active window. Newly created windows are active but not visible for one frame // while they determine their layout and sizing. if (animateWantsInval || fStatsLayer.getActive() || fRefresh || io.MetricsActiveWindows > 1 || io.MetricsRenderWindows > 0) { fWindow->inval(); } } template static void WriteStateObject(SkJSONWriter& writer, const char* name, const char* value, OptionsFunc&& optionsFunc) { writer.beginObject(); { writer.appendString(kName , name); writer.appendString(kValue, value); writer.beginArray(kOptions); { optionsFunc(writer); } writer.endArray(); } writer.endObject(); } void Viewer::updateUIState() { if (!fWindow) { return; } if (fWindow->sampleCount() < 1) { return; // Surface hasn't been created yet. } SkDynamicMemoryWStream memStream; SkJSONWriter writer(&memStream); writer.beginArray(); // Slide state WriteStateObject(writer, kSlideStateName, fSlides[fCurrentSlide]->getName().c_str(), [this](SkJSONWriter& writer) { for(const auto& slide : fSlides) { writer.appendString(slide->getName().c_str()); } }); // Backend state WriteStateObject(writer, kBackendStateName, kBackendTypeStrings[fBackendType], [](SkJSONWriter& writer) { for (const auto& str : kBackendTypeStrings) { writer.appendString(str); } }); // MSAA state const auto countString = SkStringPrintf("%d", fWindow->sampleCount()); WriteStateObject(writer, kMSAAStateName, countString.c_str(), [this](SkJSONWriter& writer) { writer.appendS32(0); if (sk_app::Window::kRaster_BackendType == fBackendType) { return; } for (int msaa : {4, 8, 16}) { writer.appendS32(msaa); } }); // Path renderer state GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers; WriteStateObject(writer, kPathRendererStateName, gPathRendererNames[pr].c_str(), [this](SkJSONWriter& writer) { auto ctx = fWindow->directContext(); if (!ctx) { writer.appendString("Software"); } else { const auto* caps = ctx->priv().caps(); writer.appendString(gPathRendererNames[GpuPathRenderers::kDefault].c_str()); if (fWindow->sampleCount() > 1 || FLAGS_dmsaa) { if (GrTessellationPathRenderer::IsSupported(*caps)) { writer.appendString( gPathRendererNames[GpuPathRenderers::kTessellation].c_str()); } } if (1 == fWindow->sampleCount()) { writer.appendString(gPathRendererNames[GpuPathRenderers::kSmall].c_str()); } writer.appendString(gPathRendererNames[GpuPathRenderers::kTriangulating].c_str()); writer.appendString(gPathRendererNames[GpuPathRenderers::kNone].c_str()); } }); // Softkey state WriteStateObject(writer, kSoftkeyStateName, kSoftkeyHint, [this](SkJSONWriter& writer) { writer.appendString(kSoftkeyHint); for (const auto& softkey : fCommands.getCommandsAsSoftkeys()) { writer.appendString(softkey.c_str()); } }); writer.endArray(); writer.flush(); auto data = memStream.detachAsData(); // TODO: would be cool to avoid this copy const SkString cstring(static_cast(data->data()), data->size()); fWindow->setUIState(cstring.c_str()); } void Viewer::onUIStateChanged(const SkString& stateName, const SkString& stateValue) { // For those who will add more features to handle the state change in this function: // After the change, please call updateUIState no notify the frontend (e.g., Android app). // For example, after slide change, updateUIState is called inside setupCurrentSlide; // after backend change, updateUIState is called in this function. if (stateName.equals(kSlideStateName)) { for (int i = 0; i < fSlides.count(); ++i) { if (fSlides[i]->getName().equals(stateValue)) { this->setCurrentSlide(i); return; } } SkDebugf("Slide not found: %s", stateValue.c_str()); } else if (stateName.equals(kBackendStateName)) { for (int i = 0; i < sk_app::Window::kBackendTypeCount; i++) { if (stateValue.equals(kBackendTypeStrings[i])) { if (fBackendType != i) { fBackendType = (sk_app::Window::BackendType)i; for(auto& slide : fSlides) { slide->gpuTeardown(); } fWindow->detach(); fWindow->attach(backend_type_for_window(fBackendType)); } break; } } } else if (stateName.equals(kMSAAStateName)) { DisplayParams params = fWindow->getRequestedDisplayParams(); int sampleCount = atoi(stateValue.c_str()); if (sampleCount != params.fMSAASampleCount) { params.fMSAASampleCount = sampleCount; fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); this->updateUIState(); } } else if (stateName.equals(kPathRendererStateName)) { DisplayParams params = fWindow->getRequestedDisplayParams(); for (const auto& pair : gPathRendererNames) { if (pair.second == stateValue.c_str()) { if (params.fGrContextOptions.fGpuPathRenderers != pair.first) { params.fGrContextOptions.fGpuPathRenderers = pair.first; fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); this->updateUIState(); } break; } } } else if (stateName.equals(kSoftkeyStateName)) { if (!stateValue.equals(kSoftkeyHint)) { fCommands.onSoftkey(stateValue); this->updateUIState(); // This is still needed to reset the value to kSoftkeyHint } } else if (stateName.equals(kRefreshStateName)) { // This state is actually NOT in the UI state. // We use this to allow Android to quickly set bool fRefresh. fRefresh = stateValue.equals(kON); } else { SkDebugf("Unknown stateName: %s", stateName.c_str()); } } bool Viewer::onKey(skui::Key key, skui::InputState state, skui::ModifierKey modifiers) { return fCommands.onKey(key, state, modifiers); } bool Viewer::onChar(SkUnichar c, skui::ModifierKey modifiers) { if (fSlides[fCurrentSlide]->onChar(c)) { fWindow->inval(); return true; } else { return fCommands.onChar(c, modifiers); } }