/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkImageInfo.h" #include "include/core/SkPaint.h" #include "include/core/SkRRect.h" #include "include/core/SkRect.h" #include "include/core/SkRegion.h" #include "include/core/SkScalar.h" #include "include/core/SkSurface.h" #include "include/core/SkTypes.h" #include "include/private/SkTDArray.h" #include "include/utils/SkCanvasStateUtils.h" #include "src/core/SkCanvasPriv.h" #include "src/core/SkClipOpPriv.h" #include "src/core/SkTLazy.h" #include "tests/Test.h" #include "tools/flags/CommandLineFlags.h" #include class SkCanvasState; // Uncomment to include tests of CanvasState across a library boundary. This will change how 'dm' // is built so that the functions defined in CanvasStateHelpers do not exist inside 'dm', and are // instead compiled as part of the 'canvas_state_lib' build target. This produces a shared library // that must be passed to 'dm' using the --library flag when running. // #define SK_TEST_CANVAS_STATE_CROSS_LIBRARY // Must be included after SK_TEST_CANVAS_STATE_CROSS_LIBRARY is defined #include "tests/CanvasStateHelpers.h" // dlopen, the library flag and canvas state helpers are only used for tests which require this flag #if defined(SK_TEST_CANVAS_STATE_CROSS_LIBRARY) static DEFINE_string(library, "", "Support library to use for CanvasState test. Must be provided when" " SK_TEST_CANVAS_STATE_CROSS_LIBRARY to specify the dynamically loaded library" " that receives the captured canvas state. Functions from the library will be" " called to test SkCanvasState. The library is built from the canvas_state_lib" " target"); #include "src/ports/SkOSLibrary.h" // Automatically loads library passed to --library flag and closes it when it goes out of scope. class OpenLibResult { public: OpenLibResult(skiatest::Reporter* reporter) { if (FLAGS_library.count() == 1) { fLibrary = SkLoadDynamicLibrary(FLAGS_library[0]); REPORTER_ASSERT(reporter, fLibrary != nullptr, "Failed to open library!"); } else { fLibrary = nullptr; } } ~OpenLibResult() { if (fLibrary) { SkFreeDynamicLibrary(fLibrary); } } // Load a function address from the library object, or null if the library had failed void* procAddress(const char* funcName) { if (fLibrary) { return SkGetProcedureAddress(fLibrary, funcName); } return nullptr; } private: void* fLibrary; }; #endif static void write_image(const SkImage* img, const char path[]) { auto data = img->encodeToData(); SkFILEWStream(path).write(data->data(), data->size()); } static void compare(skiatest::Reporter* reporter, SkImage* img0, SkImage* img1) { if (false) { static int counter; SkDebugf("---- counter %d\n", counter); SkString name; name.printf("no_capture_%d.png", counter); write_image(img0, name.c_str()); name.printf("capture_%d.png", counter); write_image(img1, name.c_str()); counter++; } SkPixmap pm[2]; REPORTER_ASSERT(reporter, img0->peekPixels(&pm[0])); REPORTER_ASSERT(reporter, img1->peekPixels(&pm[1])); // now we memcmp the two bitmaps REPORTER_ASSERT(reporter, pm[0].computeByteSize() == pm[1].computeByteSize()); REPORTER_ASSERT(reporter, pm[0].rowBytes() == (size_t)pm[0].width() * pm[0].info().bytesPerPixel()); REPORTER_ASSERT(reporter, pm[1].rowBytes() == (size_t)pm[1].width() * pm[1].info().bytesPerPixel()); if (memcmp(pm[0].addr(0, 0), pm[1].addr(0, 0), pm[0].computeByteSize()) != 0) { REPORTER_ASSERT(reporter, false); } } DEF_TEST(CanvasState_test_complex_layers, reporter) { const int WIDTH = 400; const int HEIGHT = 400; const int SPACER = 10; SkRect rect = SkRect::MakeXYWH(SkIntToScalar(SPACER), SkIntToScalar(SPACER), SkIntToScalar(WIDTH-(2*SPACER)), SkIntToScalar((HEIGHT-(2*SPACER)) / 7)); const SkColorType colorTypes[] = { kRGB_565_SkColorType, kN32_SkColorType }; const int layerAlpha[] = { 255, 255, 0 }; bool (*drawFn)(SkCanvasState* state, float l, float t, float r, float b, int32_t s); #if defined(SK_TEST_CANVAS_STATE_CROSS_LIBRARY) OpenLibResult openLibResult(reporter); *(void**) (&drawFn) = openLibResult.procAddress("complex_layers_draw_from_canvas_state"); #else drawFn = complex_layers_draw_from_canvas_state; #endif REPORTER_ASSERT(reporter, drawFn); if (!drawFn) { return; } for (size_t i = 0; i < SK_ARRAY_COUNT(colorTypes); ++i) { sk_sp images[2]; for (int j = 0; j < 2; ++j) { auto surf = SkSurface::MakeRaster(SkImageInfo::Make(WIDTH, HEIGHT, colorTypes[i], kPremul_SkAlphaType)); SkCanvas* canvas = surf->getCanvas(); canvas->drawColor(SK_ColorRED); for (size_t k = 0; k < SK_ARRAY_COUNT(layerAlpha); ++k) { SkTLazy paint; if (layerAlpha[k] != 0xFF) { paint.init()->setAlpha(layerAlpha[k]); } // draw a rect within the layer's bounds and again outside the layer's bounds canvas->saveLayer(SkCanvas::SaveLayerRec(&rect, paint.getMaybeNull())); if (j) { // Capture from the first Skia. SkCanvasState* state = SkCanvasStateUtils::CaptureCanvasState(canvas); REPORTER_ASSERT(reporter, state); // And draw to it in the second Skia. bool success = complex_layers_draw_from_canvas_state(state, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, SPACER); REPORTER_ASSERT(reporter, success); // And release it in the *first* Skia. SkCanvasStateUtils::ReleaseCanvasState(state); } else { // Draw in the first Skia. complex_layers_draw(canvas, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, SPACER); } canvas->restore(); // translate the canvas for the next iteration canvas->translate(0, 2*(rect.height() + SPACER)); } images[j] = surf->makeImageSnapshot(); } compare(reporter, images[0].get(), images[1].get()); } } //////////////////////////////////////////////////////////////////////////////// DEF_TEST(CanvasState_test_complex_clips, reporter) { const int WIDTH = 400; const int HEIGHT = 400; const int SPACER = 10; SkIRect layerRect = SkIRect::MakeWH(WIDTH, HEIGHT / 4); layerRect.inset(2*SPACER, 2*SPACER); SkIRect clipRect = layerRect; clipRect.fRight = clipRect.fLeft + (clipRect.width() / 2) - (2*SPACER); clipRect.outset(SPACER, SPACER); SkIRect regionBounds = clipRect; regionBounds.offset(clipRect.width() + (2*SPACER), 0); SkIRect regionInterior = regionBounds; regionInterior.inset(SPACER*3, SPACER*3); SkRegion clipRegion; clipRegion.setRect(regionBounds); clipRegion.op(regionInterior, SkRegion::kDifference_Op); const SkRegion::Op clipOps[] = { SkRegion::kIntersect_Op, SkRegion::kIntersect_Op, SkRegion::kDifference_Op, }; bool (*drawFn)(SkCanvasState* state, int32_t l, int32_t t, int32_t r, int32_t b, int32_t clipOp, int32_t regionRects, int32_t* rectCoords); #if defined(SK_TEST_CANVAS_STATE_CROSS_LIBRARY) OpenLibResult openLibResult(reporter); *(void**) (&drawFn) = openLibResult.procAddress("complex_clips_draw_from_canvas_state"); #else drawFn = complex_clips_draw_from_canvas_state; #endif REPORTER_ASSERT(reporter, drawFn); if (!drawFn) { return; } sk_sp images[2]; for (int i = 0; i < 2; ++i) { auto surf = SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(WIDTH, HEIGHT)); SkCanvas* canvas = surf->getCanvas(); canvas->drawColor(SK_ColorRED); SkRegion localRegion = clipRegion; SkPaint paint; paint.setAlpha(128); for (size_t j = 0; j < SK_ARRAY_COUNT(clipOps); ++j) { SkRect layerBounds = SkRect::Make(layerRect); canvas->saveLayer(SkCanvas::SaveLayerRec(&layerBounds, &paint)); if (i) { SkCanvasState* state = SkCanvasStateUtils::CaptureCanvasState(canvas); REPORTER_ASSERT(reporter, state); SkRegion::Iterator iter(localRegion); SkTDArray rectCoords; for (; !iter.done(); iter.next()) { const SkIRect& rect = iter.rect(); *rectCoords.append() = rect.fLeft; *rectCoords.append() = rect.fTop; *rectCoords.append() = rect.fRight; *rectCoords.append() = rect.fBottom; } bool success = drawFn(state, clipRect.fLeft, clipRect.fTop, clipRect.fRight, clipRect.fBottom, clipOps[j], rectCoords.count() / 4, rectCoords.begin()); REPORTER_ASSERT(reporter, success); SkCanvasStateUtils::ReleaseCanvasState(state); } else { complex_clips_draw(canvas, clipRect.fLeft, clipRect.fTop, clipRect.fRight, clipRect.fBottom, clipOps[j], localRegion); } canvas->restore(); // translate the canvas and region for the next iteration canvas->translate(0, SkIntToScalar(2*(layerRect.height() + (SPACER)))); localRegion.translate(0, 2*(layerRect.height() + SPACER)); } images[i] = surf->makeImageSnapshot(); } compare(reporter, images[0].get(), images[1].get()); } //////////////////////////////////////////////////////////////////////////////// DEF_TEST(CanvasState_test_soft_clips, reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); SkCanvas canvas(bitmap); SkRRect roundRect; roundRect.setOval(SkRect::MakeWH(5, 5)); canvas.clipRRect(roundRect, kIntersect_SkClipOp, true); SkCanvasState* state = SkCanvasStateUtils::CaptureCanvasState(&canvas); REPORTER_ASSERT(reporter, !state); } DEF_TEST(CanvasState_test_saveLayer_clip, reporter) { const int WIDTH = 100; const int HEIGHT = 100; const int LAYER_WIDTH = 50; const int LAYER_HEIGHT = 50; SkBitmap bitmap; bitmap.allocN32Pixels(WIDTH, HEIGHT); SkCanvas canvas(bitmap); SkRect bounds = SkRect::MakeWH(SkIntToScalar(LAYER_WIDTH), SkIntToScalar(LAYER_HEIGHT)); canvas.clipRect(SkRect::MakeWH(SkIntToScalar(WIDTH), SkIntToScalar(HEIGHT))); // Check that saveLayer sets the clip stack to the layer bounds. canvas.saveLayer(&bounds, nullptr); SkIRect devClip = canvas.getDeviceClipBounds(); REPORTER_ASSERT(reporter, canvas.isClipRect()); REPORTER_ASSERT(reporter, devClip.width() == LAYER_WIDTH); REPORTER_ASSERT(reporter, devClip.height() == LAYER_HEIGHT); canvas.restore(); }