/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkFloatingPoint_DEFINED #define SkFloatingPoint_DEFINED #include "SkTypes.h" #include #include // For _POSIX_VERSION #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) #include #endif #include "SkFloatBits.h" // C++98 cmath std::pow seems to be the earliest portable way to get float pow. // However, on Linux including cmath undefines isfinite. // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 static inline float sk_float_pow(float base, float exp) { return powf(base, exp); } static inline float sk_float_copysign(float x, float y) { // c++11 contains a 'float copysign(float, float)' function in . #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800) return copysign(x, y); // Posix has demanded 'float copysignf(float, float)' (from C99) since Issue 6. #elif defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L return copysignf(x, y); // Visual studio prior to 13 only has 'double _copysign(double, double)'. #elif defined(_MSC_VER) return _copysign(x, y); // Otherwise convert to bits and extract sign. #else int32_t xbits = SkFloat2Bits(x); int32_t ybits = SkFloat2Bits(y); return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); #endif } #ifdef SK_BUILD_FOR_WINCE #define sk_float_sqrt(x) (float)::sqrt(x) #define sk_float_sin(x) (float)::sin(x) #define sk_float_cos(x) (float)::cos(x) #define sk_float_tan(x) (float)::tan(x) #define sk_float_acos(x) (float)::acos(x) #define sk_float_asin(x) (float)::asin(x) #define sk_float_atan2(y,x) (float)::atan2(y,x) #define sk_float_abs(x) (float)::fabs(x) #define sk_float_mod(x,y) (float)::fmod(x,y) #define sk_float_exp(x) (float)::exp(x) #define sk_float_log(x) (float)::log(x) #define sk_float_floor(x) (float)::floor(x) #define sk_float_ceil(x) (float)::ceil(x) #else #define sk_float_sqrt(x) sqrtf(x) #define sk_float_sin(x) sinf(x) #define sk_float_cos(x) cosf(x) #define sk_float_tan(x) tanf(x) #define sk_float_floor(x) floorf(x) #define sk_float_ceil(x) ceilf(x) #ifdef SK_BUILD_FOR_MAC #define sk_float_acos(x) static_cast(acos(x)) #define sk_float_asin(x) static_cast(asin(x)) #else #define sk_float_acos(x) acosf(x) #define sk_float_asin(x) asinf(x) #endif #define sk_float_atan2(y,x) atan2f(y,x) #define sk_float_abs(x) fabsf(x) #define sk_float_mod(x,y) fmodf(x,y) #define sk_float_exp(x) expf(x) #define sk_float_log(x) logf(x) #endif #ifdef SK_BUILD_FOR_WIN #define sk_float_isfinite(x) _finite(x) #define sk_float_isnan(x) _isnan(x) static inline int sk_float_isinf(float x) { int32_t bits = SkFloat2Bits(x); return (bits << 1) == (0xFF << 24); } #else #define sk_float_isfinite(x) isfinite(x) #define sk_float_isnan(x) isnan(x) #define sk_float_isinf(x) isinf(x) #endif #define sk_double_isnan(a) sk_float_isnan(a) #ifdef SK_USE_FLOATBITS #define sk_float_floor2int(x) SkFloatToIntFloor(x) #define sk_float_round2int(x) SkFloatToIntRound(x) #define sk_float_ceil2int(x) SkFloatToIntCeil(x) #else #define sk_float_floor2int(x) (int)sk_float_floor(x) #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) #define sk_float_ceil2int(x) (int)sk_float_ceil(x) #endif extern const uint32_t gIEEENotANumber; extern const uint32_t gIEEEInfinity; extern const uint32_t gIEEENegativeInfinity; #define SK_FloatNaN (*SkTCast(&gIEEENotANumber)) #define SK_FloatInfinity (*SkTCast(&gIEEEInfinity)) #define SK_FloatNegativeInfinity (*SkTCast(&gIEEENegativeInfinity)) #if defined(__SSE__) #include #elif defined(__ARM_NEON__) #include #endif // Fast, approximate inverse square root. // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. static inline float sk_float_rsqrt(const float x) { // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got // it at compile time. This is going to be too fast to productively hide behind a function pointer. // // We do one step of Newton's method to refine the estimates in the NEON and null paths. No // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. #if defined(__SSE__) float result; _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x))); return result; #elif defined(__ARM_NEON__) // Get initial estimate. const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. float32x2_t estimate = vrsqrte_f32(xx); // One step of Newton's method to refine. const float32x2_t estimate_sq = vmul_f32(estimate, estimate); estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. #else // Get initial estimate. int i = *SkTCast(&x); i = 0x5f3759df - (i>>1); float estimate = *SkTCast(&i); // One step of Newton's method to refine. const float estimate_sq = estimate*estimate; estimate *= (1.5f-0.5f*x*estimate_sq); return estimate; #endif } #endif