/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkImage.h" #include "include/core/SkSurface.h" #include "include/effects/SkGradientShader.h" #include "include/gpu/GrDirectContext.h" #include "include/private/SkColorData.h" #include "include/private/SkHalf.h" #include "include/private/SkImageInfoPriv.h" #include "include/utils/SkNWayCanvas.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkMathPriv.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrSurfaceContext.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/ToolUtils.h" #include "tools/gpu/BackendTextureImageFactory.h" #include "tools/gpu/GrContextFactory.h" #include "tools/gpu/ProxyUtils.h" #include static const int DEV_W = 100, DEV_H = 100; static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H); static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1, DEV_H * SK_Scalar1); static SkPMColor get_src_color(int x, int y) { SkASSERT(x >= 0 && x < DEV_W); SkASSERT(y >= 0 && y < DEV_H); U8CPU r = x; U8CPU g = y; U8CPU b = 0xc; U8CPU a = 0xff; switch ((x+y) % 5) { case 0: a = 0xff; break; case 1: a = 0x80; break; case 2: a = 0xCC; break; case 4: a = 0x01; break; case 3: a = 0x00; break; } return SkPremultiplyARGBInline(a, r, g, b); } static SkPMColor get_dst_bmp_init_color(int x, int y, int w) { int n = y * w + x; U8CPU b = n & 0xff; U8CPU g = (n >> 8) & 0xff; U8CPU r = (n >> 16) & 0xff; return SkPackARGB32(0xff, r, g , b); } // TODO: Make this consider both ATs static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr, bool* doUnpremul) { *doUnpremul = (kUnpremul_SkAlphaType == at); const uint8_t* c = reinterpret_cast(addr); U8CPU a,r,g,b; switch (ct) { case kBGRA_8888_SkColorType: b = static_cast(c[0]); g = static_cast(c[1]); r = static_cast(c[2]); a = static_cast(c[3]); break; case kRGB_888x_SkColorType: // fallthrough case kRGBA_8888_SkColorType: r = static_cast(c[0]); g = static_cast(c[1]); b = static_cast(c[2]); // We set this even when for kRGB_888x because our caller will validate that it is 0xff. a = static_cast(c[3]); break; default: SkDEBUGFAIL("Unexpected colortype"); return 0; } if (*doUnpremul) { r = SkMulDiv255Ceiling(r, a); g = SkMulDiv255Ceiling(g, a); b = SkMulDiv255Ceiling(b, a); } return SkPackARGB32(a, r, g, b); } static SkBitmap make_src_bitmap() { static SkBitmap bmp; if (bmp.isNull()) { bmp.allocN32Pixels(DEV_W, DEV_H); intptr_t pixels = reinterpret_cast(bmp.getPixels()); for (int y = 0; y < DEV_H; ++y) { for (int x = 0; x < DEV_W; ++x) { SkPMColor* pixel = reinterpret_cast(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel()); *pixel = get_src_color(x, y); } } } return bmp; } static void fill_src_canvas(SkCanvas* canvas) { canvas->save(); canvas->setMatrix(SkMatrix::I()); canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint); canvas->restore(); } static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) { int w = bitmap->width(); int h = bitmap->height(); intptr_t pixels = reinterpret_cast(bitmap->getPixels()); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { SkPMColor initColor = get_dst_bmp_init_color(x, y, w); if (kAlpha_8_SkColorType == bitmap->colorType()) { uint8_t* alpha = reinterpret_cast(pixels + y * bitmap->rowBytes() + x); *alpha = SkGetPackedA32(initColor); } else { SkPMColor* pixel = reinterpret_cast(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel()); *pixel = initColor; } } } } static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) { if (!didPremulConversion) { return a == b; } int32_t aA = static_cast(SkGetPackedA32(a)); int32_t aR = static_cast(SkGetPackedR32(a)); int32_t aG = static_cast(SkGetPackedG32(a)); int32_t aB = SkGetPackedB32(a); int32_t bA = static_cast(SkGetPackedA32(b)); int32_t bR = static_cast(SkGetPackedR32(b)); int32_t bG = static_cast(SkGetPackedG32(b)); int32_t bB = static_cast(SkGetPackedB32(b)); return aA == bA && SkAbs32(aR - bR) <= 1 && SkAbs32(aG - bG) <= 1 && SkAbs32(aB - bB) <= 1; } // checks the bitmap contains correct pixels after the readPixels // if the bitmap was prefilled with pixels it checks that these weren't // overwritten in the area outside the readPixels. static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y, bool checkSurfacePixels, bool checkBitmapPixels, SkImageInfo surfaceInfo) { SkAlphaType bmpAT = bitmap.alphaType(); SkColorType bmpCT = bitmap.colorType(); SkASSERT(!bitmap.isNull()); SkASSERT(checkSurfacePixels || checkBitmapPixels); int bw = bitmap.width(); int bh = bitmap.height(); SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh); SkIRect clippedSrcRect = DEV_RECT; if (!clippedSrcRect.intersect(srcRect)) { clippedSrcRect.setEmpty(); } if (kAlpha_8_SkColorType == bmpCT) { for (int by = 0; by < bh; ++by) { for (int bx = 0; bx < bw; ++bx) { int devx = bx + srcRect.fLeft; int devy = by + srcRect.fTop; const uint8_t* alpha = bitmap.getAddr8(bx, by); if (clippedSrcRect.contains(devx, devy)) { if (checkSurfacePixels) { uint8_t surfaceAlpha = (surfaceInfo.alphaType() == kOpaque_SkAlphaType) ? 0xFF : SkGetPackedA32(get_src_color(devx, devy)); if (surfaceAlpha != *alpha) { ERRORF(reporter, "Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ", bx, by, surfaceAlpha, *alpha); return false; } } } else if (checkBitmapPixels) { uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw)); if (origDstAlpha != *alpha) { ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " "Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha); return false; } } } } return true; } for (int by = 0; by < bh; ++by) { for (int bx = 0; bx < bw; ++bx) { int devx = bx + srcRect.fLeft; int devy = by + srcRect.fTop; const uint32_t* pixel = bitmap.getAddr32(bx, by); if (clippedSrcRect.contains(devx, devy)) { if (checkSurfacePixels) { SkPMColor surfacePMColor = get_src_color(devx, devy); if (SkColorTypeIsAlphaOnly(surfaceInfo.colorType())) { surfacePMColor &= 0xFF000000; } if (kOpaque_SkAlphaType == surfaceInfo.alphaType() || kOpaque_SkAlphaType == bmpAT) { surfacePMColor |= 0xFF000000; } bool didPremul; SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul); if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) { ERRORF(reporter, "Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. " "Readback was unpremul: %d", bx, by, surfacePMColor, pmPixel, didPremul); return false; } } } else if (checkBitmapPixels) { uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw); if (origDstPixel != *pixel) { ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " "Expected 0x%08x, got 0x%08x", origDstPixel, *pixel); return false; } } } } return true; } enum class TightRowBytes : bool { kNo, kYes }; static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, TightRowBytes tightRB, SkColorType ct, SkAlphaType at) { SkImageInfo info = SkImageInfo::Make(rect.size(), ct, at); size_t rowBytes = 0; if (tightRB == TightRowBytes::kNo) { rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel()); } bitmap->allocPixels(info, rowBytes); } static const struct { SkColorType fColorType; SkAlphaType fAlphaType; } gReadPixelsConfigs[] = { {kRGBA_8888_SkColorType, kPremul_SkAlphaType}, {kRGBA_8888_SkColorType, kUnpremul_SkAlphaType}, {kRGB_888x_SkColorType, kOpaque_SkAlphaType}, {kBGRA_8888_SkColorType, kPremul_SkAlphaType}, {kBGRA_8888_SkColorType, kUnpremul_SkAlphaType}, {kAlpha_8_SkColorType, kPremul_SkAlphaType}, }; const SkIRect gReadPixelsTestRects[] = { // entire thing DEV_RECT, // larger on all sides SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10), // fully contained SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4), // outside top right corner SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1), // touching top right corner SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10), }; bool read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo, const SkImageInfo& srcInfo) { return SkIRect::Intersects(srcRect, DEV_RECT) && SkImageInfoValidConversion(dstInfo, srcInfo); } static void test_readpixels(skiatest::Reporter* reporter, const sk_sp& surface, const SkImageInfo& surfaceInfo) { SkCanvas* canvas = surface->getCanvas(); fill_src_canvas(canvas); for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { const SkIRect& srcRect = gReadPixelsTestRects[rect]; for (auto tightRB : {TightRowBytes::kYes, TightRowBytes::kNo}) { for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { SkBitmap bmp; init_bitmap(&bmp, srcRect, tightRB, gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType); // if the bitmap has pixels allocated before the readPixels, // note that and fill them with pattern bool startsWithPixels = !bmp.isNull(); if (startsWithPixels) { fill_dst_bmp_with_init_data(&bmp); } uint32_t idBefore = surface->generationID(); bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop); uint32_t idAfter = surface->generationID(); // we expect to succeed when the read isn't fully clipped out and the infos are // compatible. bool expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); // determine whether we expected the read to succeed. REPORTER_ASSERT(reporter, expectSuccess == success, "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", success, surfaceInfo.colorType(), surfaceInfo.alphaType(), bmp.info().colorType(), bmp.info().alphaType()); // read pixels should never change the gen id REPORTER_ASSERT(reporter, idBefore == idAfter); if (success || startsWithPixels) { check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, startsWithPixels, surfaceInfo); } else { // if we had no pixels beforehand and the readPixels // failed then our bitmap should still not have pixels REPORTER_ASSERT(reporter, bmp.isNull()); } } } } } DEF_TEST(ReadPixels, reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H); auto surface(SkSurface::MakeRaster(info)); test_readpixels(reporter, surface, info); } static void test_readpixels_texture(skiatest::Reporter* reporter, GrDirectContext* dContext, std::unique_ptr sContext, const SkImageInfo& surfaceInfo) { for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { const SkIRect& srcRect = gReadPixelsTestRects[rect]; for (auto tightRB : {TightRowBytes::kYes, TightRowBytes::kNo}) { for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { SkBitmap bmp; init_bitmap(&bmp, srcRect, tightRB, gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType); // if the bitmap has pixels allocated before the readPixels, // note that and fill them with pattern bool startsWithPixels = !bmp.isNull(); // Try doing the read directly from a non-renderable texture if (startsWithPixels) { fill_dst_bmp_with_init_data(&bmp); bool success = sContext->readPixels(dContext, bmp.info(), bmp.getPixels(), bmp.rowBytes(), {srcRect.fLeft, srcRect.fTop}); auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); REPORTER_ASSERT( reporter, expectSuccess == success, "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", success, surfaceInfo.colorType(), surfaceInfo.alphaType(), bmp.info().colorType(), bmp.info().alphaType()); if (success) { check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true, surfaceInfo); } } } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); SkBitmap bmp = make_src_bitmap(); // On the GPU we will also try reading back from a non-renderable texture. for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) { for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { auto view = sk_gpu_test::MakeTextureProxyViewFromData( dContext, renderable, origin, bmp.info(), bmp.getPixels(), bmp.rowBytes()); GrColorType grColorType = SkColorTypeToGrColorType(bmp.colorType()); auto sContext = GrSurfaceContext::Make(dContext, std::move(view), grColorType, kPremul_SkAlphaType, nullptr); auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType); test_readpixels_texture(reporter, dContext, std::move(sContext), info); } } } /////////////////////////////////////////////////////////////////////////////////////////////////// static const uint32_t kNumPixels = 5; // The five reference pixels are: red, green, blue, white, black. // Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector // plus a tail pixel. static const uint32_t rgba[kNumPixels] = { 0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000 }; static const uint32_t bgra[kNumPixels] = { 0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000 }; static const uint16_t rgb565[kNumPixels] = { SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0 }; static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F }; static const uint64_t kRed = (uint64_t) SK_Half1 << 0; static const uint64_t kGreen = (uint64_t) SK_Half1 << 16; static const uint64_t kBlue = (uint64_t) SK_Half1 << 32; static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48; static const uint64_t f16[kNumPixels] = { kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha }; static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const void* five_reference_pixels(SkColorType colorType) { switch (colorType) { case kUnknown_SkColorType: return nullptr; case kAlpha_8_SkColorType: return alpha8; case kRGB_565_SkColorType: return rgb565; case kARGB_4444_SkColorType: return rgba4444; case kRGBA_8888_SkColorType: return rgba; case kBGRA_8888_SkColorType: return bgra; case kGray_8_SkColorType: return gray8; case kRGBA_F16_SkColorType: return f16; default: return nullptr; } SkASSERT(false); return nullptr; } static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo, const SkImageInfo& srcInfo) { if (!SkImageInfoIsValid(srcInfo)) { return; } const void* srcPixels = five_reference_pixels(srcInfo.colorType()); SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes()); sk_sp src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr); REPORTER_ASSERT(r, src); // Enough space for 5 pixels when color type is F16, more than enough space in other cases. uint64_t dstPixels[kNumPixels]; SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes()); bool success = src->readPixels(nullptr, dstPixmap, 0, 0); REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo)); if (success) { if (kGray_8_SkColorType == srcInfo.colorType() && kGray_8_SkColorType != dstInfo.colorType()) { // TODO: test (r,g,b) == (gray,gray,gray)? return; } if (kGray_8_SkColorType == dstInfo.colorType() && kGray_8_SkColorType != srcInfo.colorType()) { // TODO: test gray = luminance? return; } if (kAlpha_8_SkColorType == srcInfo.colorType() && kAlpha_8_SkColorType != dstInfo.colorType()) { // TODO: test output = black with this alpha? return; } REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()), kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType()))); } } DEF_TEST(ReadPixels_ValidConversion, reporter) { const SkColorType kColorTypes[] = { kUnknown_SkColorType, kAlpha_8_SkColorType, kRGB_565_SkColorType, kARGB_4444_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType, kGray_8_SkColorType, kRGBA_F16_SkColorType, }; const SkAlphaType kAlphaTypes[] = { kUnknown_SkAlphaType, kOpaque_SkAlphaType, kPremul_SkAlphaType, kUnpremul_SkAlphaType, }; const sk_sp kColorSpaces[] = { nullptr, SkColorSpace::MakeSRGB(), }; for (SkColorType dstCT : kColorTypes) { for (SkAlphaType dstAT : kAlphaTypes) { for (const sk_sp& dstCS : kColorSpaces) { for (SkColorType srcCT : kColorTypes) { for (SkAlphaType srcAT : kAlphaTypes) { for (const sk_sp& srcCS : kColorSpaces) { test_conversion(reporter, SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS), SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS)); } } } } } } } static constexpr int min_rgb_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 0; case kA16_unorm_SkColorType: return 0; case kA16_float_SkColorType: return 0; case kRGB_565_SkColorType: return 5; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 8; case kR16G16_unorm_SkColorType: return 16; case kR16G16_float_SkColorType: return 16; case kRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 8; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 10; case kRGB_101010x_SkColorType: return 10; case kBGRA_1010102_SkColorType: return 10; case kBGR_101010x_SkColorType: return 10; case kGray_8_SkColorType: return 8; // counting gray as "rgb" case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; } SkUNREACHABLE; } static constexpr int alpha_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 8; case kA16_unorm_SkColorType: return 16; case kA16_float_SkColorType: return 16; case kRGB_565_SkColorType: return 0; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 0; case kR16G16_unorm_SkColorType: return 0; case kR16G16_float_SkColorType: return 0; case kRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 0; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 2; case kRGB_101010x_SkColorType: return 0; case kBGRA_1010102_SkColorType: return 2; case kBGR_101010x_SkColorType: return 0; case kGray_8_SkColorType: return 0; case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; } SkUNREACHABLE; } namespace { struct GpuReadPixelTestRules { // Test unpremul sources? We could omit this and detect that creating the source of the read // failed but having it lets us skip generating reference color data. bool fAllowUnpremulSrc = true; // Expect read function to succeed for kUnpremul? bool fAllowUnpremulRead = true; // Are reads that are overlapping but not contained by the src bounds expected to succeed? bool fUncontainedRectSucceeds = true; }; // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from // the pixmap. template using GpuSrcFactory = T(SkPixmap&); enum class GpuReadResult { kFail, kSuccess, kExcusedFailure, }; // Does a read from the T into the pixmap. template using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&); } // anonymous namespace template static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, const GpuReadPixelTestRules& rules, const std::function>& srcFactory, const std::function>& read) { // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have // the same image info as src. We will do a converting readPixels() on it to get the data // to compare with the results of 'read'. auto runTest = [&](const T& src, const SkPixmap& srcPixels, const SkImageInfo& readInfo, const SkIVector& offset) { const bool csConversion = !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); const auto readCT = readInfo.colorType(); const auto readAT = readInfo.alphaType(); const auto srcCT = srcPixels.info().colorType(); const auto srcAT = srcPixels.info().alphaType(); const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); const size_t readBpp = SkColorTypeBytesPerPixel(readCT); // Make the row bytes in the dst be loose for extra stress. const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; // This will make the last row tight. const size_t dstSize = readInfo.computeByteSize(dstRB); std::unique_ptr dstData(new char[dstSize]); SkPixmap dstPixels(readInfo, dstData.get(), dstRB); // Initialize with an arbitrary value for each byte. Later we will check that only the // correct part of the destination gets overwritten by 'read'. static constexpr auto kInitialByte = static_cast(0x1B); std::fill_n(static_cast(dstPixels.writable_addr()), dstPixels.computeByteSize(), kInitialByte); const GpuReadResult result = read(src, offset, dstPixels); if (!SkIRect::Intersects(rect, surfBounds)) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (readCT == kUnknown_SkColorType) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (readAT == kUnknown_SkAlphaType) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (!rules.fAllowUnpremulRead && readAT == kUnpremul_SkAlphaType) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (result == GpuReadResult::kFail) { // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { ERRORF(reporter, "Read failed. Src CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " "Rect [%d, %d, %d, %d], CS conversion: %d\n", ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); } return; } bool guardOk = true; auto guardCheck = [](char x) { return x == kInitialByte; }; // Considering the rect we tried to read and the surface bounds figure out which pixels in // both src and dst space should actually have been read and written. SkIRect srcReadRect; if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) { SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); const bool lumConversion = !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value // difference. Note that sometimes read back on GPU can be lossy even when there no // conversion at all because GPU->CPU read may go to a lower bit depth format and then // be promoted back to the original type. For example, GL ES cannot read to 1010102, so // we go through 8888. const float numer = (lumConversion || csConversion) ? 3.f : 2.f; int rgbBits = std::min( {min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); float tol = numer / (1 << rgbBits); float alphaTol = 0; if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { // Alpha can also get squashed down to 8 bits going through an intermediate // color format. const int alphaBits = std::min({alpha_channel_bits(readCT), alpha_channel_bits(srcCT), 8}); alphaTol = 2.f / (1 << alphaBits); } const float tols[4] = {tol, tol, tol, alphaTol}; auto error = std::function([&](int x, int y, const float diffs[4]) { SkASSERT(x >= 0 && y >= 0); ERRORF(reporter, "Src CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" ", CS conversion: %d\n" "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, diffs[0], diffs[1], diffs[2], diffs[3]); }); SkAutoPixmapStorage ref; ref.alloc(readInfo.makeWH(dstWriteRect.width(), dstWriteRect.height())); srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); // This is the part of dstPixels that should have been updated. SkPixmap actual; SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); ComparePixels(ref, actual, tols, error); const auto* v = dstData.get(); const auto* end = dstData.get() + dstSize; guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); v += dstWriteRect.top() * dstPixels.rowBytes(); for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); auto pad = v + dstWriteRect.right() * readBpp; auto rowEnd = std::min(end, v + dstPixels.rowBytes()); // min protects against reading past the end of the tight last row. guardOk |= std::all_of(pad, rowEnd, guardCheck); v = rowEnd; } guardOk |= std::all_of(v, end, guardCheck); } else { guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); } if (!guardOk) { ERRORF(reporter, "Result pixels modified result outside read rect [%d, %d, %d, %d]. " "Src CT: %s, Read CT: %s, CS conversion: %d", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), csConversion); } }; static constexpr int kW = 16; static constexpr int kH = 16; // Makes the reference data that is used to populate the src. Always F32 regardless of srcCT. auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage { // Make src data in F32 with srcAT. We will convert it to each color type we test to // initialize the src. const auto refInfo = SkImageInfo::Make(kW, kH, kRGBA_F32_SkColorType, srcAT, SkColorSpace::MakeSRGB()); auto refSurf = SkSurface::MakeRaster(refInfo); static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}}; static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; SkPaint paint; paint.setShader( SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp)); refSurf->getCanvas()->drawPaint(paint); static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}}; static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; paint.setShader( SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp)); paint.setBlendMode(SkBlendMode::kPlus); refSurf->getCanvas()->drawPaint(paint); // Keep everything opaque if the src alpha type is opaque. Also, there is an issue with // 1010102 (the only color type where the number of alpha bits is non-zero and not the // same as r, g, and b). Because of the different precisions the draw below can create // data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp // r, g, b to a if the dst is premul and a different color type. GPU doesn't do this. // We could but 1010102 premul is kind of dubious anyway. So for now just keep the data // opaque. if (srcAT != kOpaque_SkAlphaType && (srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType && srcCT != kBGRA_1010102_SkColorType)) { static constexpr SkColor kColors3[] = {SK_ColorWHITE, SK_ColorWHITE, 0x60FFFFFF, SK_ColorWHITE, SK_ColorWHITE}; static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f, kColors3, kPos3, 5, SkTileMode::kMirror)); paint.setBlendMode(SkBlendMode::kDstIn); refSurf->getCanvas()->drawPaint(paint); } const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); SkAutoPixmapStorage srcPixels; srcPixels.alloc(srcInfo); refSurf->readPixels(srcPixels, 0, 0); return srcPixels; }; for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { const auto srcAT = static_cast(sat); if (srcAT == kUnknown_SkAlphaType || (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc)) { continue; } for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { const auto srcCT = static_cast(sct); // Note that we only currently use srcCT for a 1010102 workaround. If we remove this we // can also but the ref data setup above the srcCT loop. SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT); auto src = srcFactory(srcPixels); if (!src) { continue; } for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { const auto readCT = static_cast(rct); for (const sk_sp& readCS : {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { const auto readAT = static_cast(at); if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { // This doesn't make sense. continue; } // Test full size, partial, empty, and too wide rects. for (const auto& rect : { // entire thing SkIRect::MakeWH(kW, kH), // larger on all sides SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10), // fully contained SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, kW + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4), // outside top right corner SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1), // touching top right corner SkIRect::MakeLTRB(kW, -10, kW + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, kH + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, kH, 0, kH + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10), // touching entire left edge SkIRect::MakeLTRB(0, kH, kW, kH + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10), }) { const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), readCT, readAT, readCS); const SkIVector offset = rect.topLeft(); runTest(src, srcPixels, readInfo, offset); } } } } } } } namespace { struct AsyncContext { bool fCalled = false; std::unique_ptr fResult; }; } // anonymous namespace // Making this a lambda in the test functions caused: // "error: cannot compile this forwarded non-trivially copyable parameter yet" // on x86/Win/Clang bot, referring to 'result'. static void async_callback(void* c, std::unique_ptr result) { auto context = static_cast(c); context->fResult = std::move(result); context->fCalled = true; }; DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) { using Surface = sk_sp; auto reader = std::function>([](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { auto direct = surface->recordingContext()->asDirectContext(); SkASSERT(direct); AsyncContext context; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); // Rescale quality and linearity don't matter since we're doing a non-scaling readback. surface->asyncRescaleAndReadPixels(pixels.info(), rect, SkImage::RescaleGamma::kSrc, kNone_SkFilterQuality, async_callback, &context); direct->submit(); while (!context.fCalled) { direct->checkAsyncWorkCompletion(); } if (!context.fResult) { return GpuReadResult::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), context.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return GpuReadResult::kSuccess; }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = false; rules.fAllowUnpremulRead = false; rules.fUncontainedRectSucceeds = false; for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { auto factory = std::function>( [context = ctxInfo.directContext(), origin](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Surface(); } auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, src.info(), 0, origin, nullptr); if (surf) { surf->writePixels(src, 0, 0); } return surf; }); gpu_read_pixels_test_driver(reporter, rules, factory, reader); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) { using Image = sk_sp; auto context = ctxInfo.directContext(); auto reader = std::function>([context](const Image& image, const SkIVector& offset, const SkPixmap& pixels) { AsyncContext asyncContext; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); // The GPU implementation is based on rendering and will fail for non-renderable color // types. auto ct = SkColorTypeToGrColorType(image->colorType()); auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) { return GpuReadResult::kExcusedFailure; } // Rescale quality and linearity don't matter since we're doing a non-scaling readback. image->asyncRescaleAndReadPixels(pixels.info(), rect, SkImage::RescaleGamma::kSrc, kNone_SkFilterQuality, async_callback, &asyncContext); context->submit(); while (!asyncContext.fCalled) { context->checkAsyncWorkCompletion(); } if (!asyncContext.fResult) { return GpuReadResult::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return GpuReadResult::kSuccess; }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = true; // GPU doesn't support reading to kUnpremul because the rescaling works by rendering and now // we only support premul rendering. rules.fAllowUnpremulRead = false; rules.fUncontainedRectSucceeds = false; for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { auto factory = std::function>([&](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Image(); } return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src, renderable, origin); }); gpu_read_pixels_test_driver(reporter, rules, factory, reader); } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) { using Surface = sk_sp; auto reader = std::function>( [](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { return surface->readPixels(pixels, offset.fX, offset.fY) ? GpuReadResult::kSuccess : GpuReadResult::kFail; }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = false; rules.fAllowUnpremulRead = true; rules.fUncontainedRectSucceeds = true; for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { auto factory = std::function>( [context = ctxInfo.directContext(), origin](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Surface(); } auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, src.info(), 0, origin, nullptr); if (surf) { surf->writePixels(src, 0, 0); } return surf; }); gpu_read_pixels_test_driver(reporter, rules, factory, reader); } } DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) { const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); enum class ShutdownSequence { kFreeResult_DestroyContext, kDestroyContext_FreeResult, kFreeResult_ReleaseAndAbandon_DestroyContext, kFreeResult_Abandon_DestroyContext, kReleaseAndAbandon_FreeResult_DestroyContext, kAbandon_FreeResult_DestroyContext, kReleaseAndAbandon_DestroyContext_FreeResult, kAbandon_DestroyContext_FreeResult, }; for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { auto type = static_cast(t); for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, ShutdownSequence::kDestroyContext_FreeResult, ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, ShutdownSequence::kFreeResult_Abandon_DestroyContext, ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, ShutdownSequence::kAbandon_FreeResult_DestroyContext, ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { // Vulkan context abandoning without resource release has issues outside of the scope of // this test. if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType && (sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext || sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext || sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext || sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult || sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) { continue; } for (bool yuv : {false, true}) { sk_gpu_test::GrContextFactory factory(options); auto direct = factory.get(type); if (!direct) { continue; } // This test is only meaningful for contexts that support transfer buffers for // reads. if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) { continue; } auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr); if (!surf) { continue; } AsyncContext cbContext; if (yuv) { surf->asyncRescaleAndReadPixelsYUV420( kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), ii.dimensions(), SkImage::RescaleGamma::kSrc, kNone_SkFilterQuality, &async_callback, &cbContext); } else { surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc, kNone_SkFilterQuality, &async_callback, &cbContext); } direct->submit(); while (!cbContext.fCalled) { direct->checkAsyncWorkCompletion(); } if (!cbContext.fResult) { ERRORF(reporter, "Callback failed on %s. is YUV: %d", sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); continue; } // For vulkan we need to release all refs to the GrDirectContext before trying to // destroy the test context. The surface here is holding a ref. surf.reset(); // The real test is that we don't crash, get Vulkan validation errors, etc, during // this shutdown sequence. switch (sequence) { case ShutdownSequence::kFreeResult_DestroyContext: case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: case ShutdownSequence::kFreeResult_Abandon_DestroyContext: break; case ShutdownSequence::kDestroyContext_FreeResult: factory.destroyContexts(); break; case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: factory.releaseResourcesAndAbandonContexts(); break; case ShutdownSequence::kAbandon_FreeResult_DestroyContext: factory.abandonContexts(); break; case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: factory.releaseResourcesAndAbandonContexts(); factory.destroyContexts(); break; case ShutdownSequence::kAbandon_DestroyContext_FreeResult: factory.abandonContexts(); factory.destroyContexts(); break; } cbContext.fResult.reset(); switch (sequence) { case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: factory.releaseResourcesAndAbandonContexts(); break; case ShutdownSequence::kFreeResult_Abandon_DestroyContext: factory.abandonContexts(); break; case ShutdownSequence::kFreeResult_DestroyContext: case ShutdownSequence::kDestroyContext_FreeResult: case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: case ShutdownSequence::kAbandon_FreeResult_DestroyContext: case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: case ShutdownSequence::kAbandon_DestroyContext_FreeResult: break; } } } } }