/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkImage.h" #include "include/core/SkPicture.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkPoint3.h" #include "include/core/SkRect.h" #include "include/core/SkSurface.h" #include "include/effects/SkColorMatrixFilter.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkImageFilters.h" #include "include/effects/SkPerlinNoiseShader.h" #include "include/effects/SkTableColorFilter.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkColorFilterBase.h" #include "src/core/SkImageFilter_Base.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkSpecialImage.h" #include "src/core/SkSpecialSurface.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "tests/Test.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" static const int kBitmapSize = 4; namespace { class MatrixTestImageFilter : public SkImageFilter_Base { public: static sk_sp Make(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) { return sk_sp(new MatrixTestImageFilter(reporter, expectedMatrix)); } protected: sk_sp onFilterImage(const Context& ctx, SkIPoint* offset) const override { REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix); offset->fX = offset->fY = 0; return sk_ref_sp(ctx.sourceImage()); } void flatten(SkWriteBuffer& buffer) const override { SkDEBUGFAIL("Should never get here"); } private: SK_FLATTENABLE_HOOKS(MatrixTestImageFilter) MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) : INHERITED(nullptr, 0, nullptr) , fReporter(reporter) , fExpectedMatrix(expectedMatrix) { } skiatest::Reporter* fReporter; SkMatrix fExpectedMatrix; typedef SkImageFilter_Base INHERITED; }; class FailImageFilter : public SkImageFilter_Base { public: FailImageFilter() : INHERITED(nullptr, 0, nullptr) { } sk_sp onFilterImage(const Context& ctx, SkIPoint* offset) const override { return nullptr; } SK_FLATTENABLE_HOOKS(FailImageFilter) private: typedef SkImageFilter_Base INHERITED; }; sk_sp FailImageFilter::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 0); return sk_sp(new FailImageFilter()); } void draw_gradient_circle(SkCanvas* canvas, int width, int height) { SkScalar x = SkIntToScalar(width / 2); SkScalar y = SkIntToScalar(height / 2); SkScalar radius = std::min(x, y) * 0.8f; canvas->clear(0x00000000); SkColor colors[2]; colors[0] = SK_ColorWHITE; colors[1] = SK_ColorBLACK; sk_sp shader( SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2, SkTileMode::kClamp) ); SkPaint paint; paint.setShader(shader); canvas->drawCircle(x, y, radius, paint); } SkBitmap make_gradient_circle(int width, int height) { SkBitmap bitmap; bitmap.allocN32Pixels(width, height); SkCanvas canvas(bitmap); draw_gradient_circle(&canvas, width, height); return bitmap; } class FilterList { public: FilterList(sk_sp input, const SkIRect* cropRect = nullptr) { static const SkScalar kBlurSigma = SkIntToScalar(5); SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); { sk_sp cf(SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcIn)); this->addFilter("color filter", SkImageFilters::ColorFilter(std::move(cf), input, cropRect)); } { sk_sp gradientImage(SkImage::MakeFromBitmap(make_gradient_circle(64, 64))); sk_sp gradientSource(SkImageFilters::Image(std::move(gradientImage))); this->addFilter("displacement map", SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f, std::move(gradientSource), input, cropRect)); } this->addFilter("blur", SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("drop shadow", SkImageFilters::DropShadow( SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input, cropRect)); this->addFilter("diffuse lighting", SkImageFilters::PointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect)); this->addFilter("specular lighting", SkImageFilters::PointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input, cropRect)); { SkScalar kernel[9] = { SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), }; const SkISize kernelSize = SkISize::Make(3, 3); const SkScalar gain = SK_Scalar1, bias = 0; // This filter needs a saveLayer bc it is in repeat mode this->addFilter("matrix convolution", SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkTileMode::kRepeat, false, input, cropRect), true); } this->addFilter("merge", SkImageFilters::Merge(input, input, cropRect)); { SkPaint greenColorShaderPaint; greenColorShaderPaint.setShader(SkShaders::Color(SK_ColorGREEN)); SkIRect leftSideCropRect = SkIRect::MakeXYWH(0, 0, 32, 64); sk_sp paintFilterLeft(SkImageFilters::Paint(greenColorShaderPaint, &leftSideCropRect)); SkIRect rightSideCropRect = SkIRect::MakeXYWH(32, 0, 32, 64); sk_sp paintFilterRight(SkImageFilters::Paint(greenColorShaderPaint, &rightSideCropRect)); this->addFilter("merge with disjoint inputs", SkImageFilters::Merge( std::move(paintFilterLeft), std::move(paintFilterRight), cropRect)); } this->addFilter("offset", SkImageFilters::Offset(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("dilate", SkImageFilters::Dilate(3, 2, input, cropRect)); this->addFilter("erode", SkImageFilters::Erode(2, 3, input, cropRect)); this->addFilter("tile", SkImageFilters::Tile(SkRect::MakeXYWH(0, 0, 50, 50), cropRect ? SkRect::Make(*cropRect) : SkRect::MakeXYWH(0, 0, 100, 100), input)); if (!cropRect) { SkMatrix matrix; matrix.setTranslate(SK_Scalar1, SK_Scalar1); matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1); this->addFilter("matrix", SkImageFilters::MatrixTransform(matrix, kLow_SkFilterQuality, input)); } { sk_sp blur(SkImageFilters::Blur(kBlurSigma, kBlurSigma, input)); this->addFilter("blur and offset", SkImageFilters::Offset( kBlurSigma, kBlurSigma, std::move(blur), cropRect)); } { SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(64, 64); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); sk_sp picture(recorder.finishRecordingAsPicture()); sk_sp pictureFilter(SkImageFilters::Picture(std::move(picture))); this->addFilter("picture and blur", SkImageFilters::Blur( kBlurSigma, kBlurSigma, std::move(pictureFilter), cropRect)); } { SkPaint paint; paint.setShader(SkPerlinNoiseShader::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0)); sk_sp paintFilter(SkImageFilters::Paint(paint)); this->addFilter("paint and blur", SkImageFilters::Blur( kBlurSigma, kBlurSigma, std::move(paintFilter), cropRect)); } this->addFilter("xfermode", SkImageFilters::Xfermode( SkBlendMode::kSrc, input, input, cropRect)); } int count() const { return fFilters.count(); } SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); } const char* getName(int index) const { return fFilters[index].fName; } bool needsSaveLayer(int index) const { return fFilters[index].fNeedsSaveLayer; } private: struct Filter { Filter() : fName(nullptr), fNeedsSaveLayer(false) {} Filter(const char* name, sk_sp filter, bool needsSaveLayer) : fName(name) , fFilter(std::move(filter)) , fNeedsSaveLayer(needsSaveLayer) { } const char* fName; sk_sp fFilter; bool fNeedsSaveLayer; }; void addFilter(const char* name, sk_sp filter, bool needsSaveLayer = false) { fFilters.push_back(Filter(name, std::move(filter), needsSaveLayer)); } SkTArray fFilters; }; class FixedBoundsImageFilter : public SkImageFilter_Base { public: FixedBoundsImageFilter(const SkIRect& bounds) : INHERITED(nullptr, 0, nullptr), fBounds(bounds) {} private: Factory getFactory() const override { return nullptr; } const char* getTypeName() const override { return nullptr; } sk_sp onFilterImage(const Context&, SkIPoint* offset) const override { return nullptr; } SkIRect onFilterBounds(const SkIRect&, const SkMatrix&, MapDirection, const SkIRect*) const override { return fBounds; } SkIRect fBounds; typedef SkImageFilter_Base INHERITED; }; } // namespace sk_sp MatrixTestImageFilter::CreateProc(SkReadBuffer& buffer) { SkDEBUGFAIL("Should never get here"); return nullptr; } static sk_sp make_small_image() { auto surface(SkSurface::MakeRasterN32Premul(kBitmapSize, kBitmapSize)); SkCanvas* canvas = surface->getCanvas(); canvas->clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int kRectSize = kBitmapSize / 4; static_assert(kBitmapSize % 4 == 0, "bitmap size not multiple of 4"); for (int y = 0; y < kBitmapSize; y += kRectSize) { for (int x = 0; x < kBitmapSize; x += kRectSize) { canvas->save(); canvas->translate(SkIntToScalar(x), SkIntToScalar(y)); canvas->drawRect( SkRect::MakeXYWH(0, 0, kRectSize, kRectSize), darkPaint); canvas->drawRect( SkRect::MakeXYWH(kRectSize, 0, kRectSize, kRectSize), lightPaint); canvas->drawRect( SkRect::MakeXYWH(0, kRectSize, kRectSize, kRectSize), lightPaint); canvas->drawRect( SkRect::MakeXYWH(kRectSize, kRectSize, kRectSize, kRectSize), darkPaint); canvas->restore(); } } return surface->makeImageSnapshot(); } static sk_sp make_scale(float amount, sk_sp input) { float s = amount; float matrix[20] = { s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0 }; sk_sp filter(SkColorFilters::Matrix(matrix)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input)); } static sk_sp make_grayscale(sk_sp input, const SkIRect* cropRect) { float matrix[20]; memset(matrix, 0, 20 * sizeof(float)); matrix[0] = matrix[5] = matrix[10] = 0.2126f; matrix[1] = matrix[6] = matrix[11] = 0.7152f; matrix[2] = matrix[7] = matrix[12] = 0.0722f; matrix[18] = 1.0f; sk_sp filter(SkColorFilters::Matrix(matrix)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); } static sk_sp make_blue(sk_sp input, const SkIRect* cropRect) { sk_sp filter(SkColorFilters::Blend(SK_ColorBLUE, SkBlendMode::kSrcIn)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); } static sk_sp create_empty_special_surface(GrRecordingContext* rContext, int widthHeight) { if (rContext) { return SkSpecialSurface::MakeRenderTarget(rContext, widthHeight, widthHeight, GrColorType::kRGBA_8888, nullptr); } else { const SkImageInfo info = SkImageInfo::MakeN32(widthHeight, widthHeight, kOpaque_SkAlphaType); return SkSpecialSurface::MakeRaster(info); } } static sk_sp create_surface(GrRecordingContext* rContext, int width, int height) { const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); if (rContext) { return SkSurface::MakeRenderTarget(rContext, SkBudgeted::kNo, info); } else { return SkSurface::MakeRaster(info); } } static sk_sp create_empty_special_image(GrRecordingContext* rContext, int widthHeight) { sk_sp surf(create_empty_special_surface(rContext, widthHeight)); SkASSERT(surf); SkCanvas* canvas = surf->getCanvas(); SkASSERT(canvas); canvas->clear(0x0); return surf->makeImageSnapshot(); } DEF_TEST(ImageFilter, reporter) { { // Check that a color matrix filter followed by a color matrix filter // concatenates into a single filter. sk_sp doubleBrightness(make_scale(2.0f, nullptr)); sk_sp halfBrightness(make_scale(0.5f, std::move(doubleBrightness))); REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf)); cf->unref(); } { // Check that a color filter image filter without a crop rect can be // expressed as a color filter. sk_sp gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Check that a colorfilterimage filter without a crop rect but with an input // that is another colorfilterimage can be expressed as a colorfilter (composed). sk_sp mode(make_blue(nullptr, nullptr)); sk_sp gray(make_grayscale(std::move(mode), nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Test that if we exceed the limit of what ComposeColorFilter can combine, we still // can build the DAG and won't assert if we call asColorFilter. sk_sp filter(make_blue(nullptr, nullptr)); const int kWayTooManyForComposeColorFilter = 100; for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) { filter = make_blue(filter, nullptr); // the first few of these will succeed, but after we hit the internal limit, // it will then return false. (void)filter->asColorFilter(nullptr); } } { // Check that a color filter image filter with a crop rect cannot // be expressed as a color filter. SkIRect cropRect = SkIRect::MakeWH(100, 100); sk_sp grayWithCrop(make_grayscale(nullptr, &cropRect)); REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr)); } { // Check that two non-commutative matrices are concatenated in // the correct order. float blueToRedMatrix[20] = { 0 }; blueToRedMatrix[2] = blueToRedMatrix[18] = 1; float redToGreenMatrix[20] = { 0 }; redToGreenMatrix[5] = redToGreenMatrix[18] = 1; sk_sp blueToRed(SkColorFilters::Matrix(blueToRedMatrix)); sk_sp filter1(SkImageFilters::ColorFilter(std::move(blueToRed), nullptr)); sk_sp redToGreen(SkColorFilters::Matrix(redToGreenMatrix)); sk_sp filter2(SkImageFilters::ColorFilter(std::move(redToGreen), std::move(filter1))); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setImageFilter(std::move(filter2)); SkCanvas canvas(result); canvas.clear(0x0); SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize)); canvas.drawRect(rect, paint); uint32_t pixel = *result.getAddr32(0, 0); // The result here should be green, since we have effectively shifted blue to green. REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } { // Tests pass by not asserting sk_sp image(make_small_image()); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); { // This tests for : // 1 ) location at (0,0,1) SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); // 2 ) location and target at same value SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ); // 3 ) large negative specular exponent value SkScalar specularExponent = -1000; sk_sp bmSrc(SkImageFilters::Image(std::move(image))); SkPaint paint; paint.setImageFilter(SkImageFilters::SpotLitSpecular( location, target, specularExponent, 180, 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, std::move(bmSrc))); SkCanvas canvas(result); SkRect r = SkRect::MakeIWH(kBitmapSize, kBitmapSize); canvas.drawRect(r, paint); } } } static void test_cropRects(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that all filters offset to their absolute crop rect, // unaffected by the input crop rect. // Tests pass by not asserting. sk_sp srcImg(create_empty_special_image(rContext, 100)); SkASSERT(srcImg); SkIRect inputCropRect = SkIRect::MakeXYWH(8, 13, 80, 80); SkIRect cropRect = SkIRect::MakeXYWH(20, 30, 60, 60); sk_sp input(make_grayscale(nullptr, &inputCropRect)); FilterList filters(input, &cropRect); for (int i = 0; i < filters.count(); ++i) { SkImageFilter* filter = filters.getFilter(i); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, kN32_SkColorType, nullptr, srcImg.get()); sk_sp resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, resultImg, filters.getName(i)); REPORTER_ASSERT(reporter, offset.fX == 20 && offset.fY == 30, filters.getName(i)); } } static bool special_image_to_bitmap(const SkSpecialImage* src, SkBitmap* dst) { sk_sp img = src->asImage(); if (!img) { return false; } if (!dst->tryAllocN32Pixels(src->width(), src->height())) { return false; } return img->readPixels(dst->pixmap(), src->subset().fLeft, src->subset().fTop); } static void test_negative_blur_sigma(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that SkBlurImageFilter will accept a negative sigma, either in // the given arguments or after CTM application. static const int kWidth = 32, kHeight = 32; static const SkScalar kBlurSigma = SkIntToScalar(5); sk_sp positiveFilter(SkImageFilters::Blur(kBlurSigma, kBlurSigma, nullptr)); sk_sp negativeFilter(SkImageFilters::Blur(-kBlurSigma, kBlurSigma, nullptr)); sk_sp gradient = SkImage::MakeFromBitmap(make_gradient_circle(kWidth, kHeight)); sk_sp imgSrc( SkSpecialImage::MakeFromImage(rContext, SkIRect::MakeWH(kWidth, kHeight), gradient)); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, imgSrc.get()); sk_sp positiveResult1( as_IFB(positiveFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, positiveResult1); sk_sp negativeResult1( as_IFB(negativeFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, negativeResult1); SkMatrix negativeScale; negativeScale.setScale(-SK_Scalar1, SK_Scalar1); SkImageFilter_Base::Context negativeCTX(negativeScale, SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, imgSrc.get()); sk_sp negativeResult2( as_IFB(positiveFilter)->filterImage(negativeCTX).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, negativeResult2); sk_sp positiveResult2( as_IFB(negativeFilter)->filterImage(negativeCTX).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, positiveResult2); SkBitmap positiveResultBM1, positiveResultBM2; SkBitmap negativeResultBM1, negativeResultBM2; REPORTER_ASSERT(reporter, special_image_to_bitmap(positiveResult1.get(), &positiveResultBM1)); REPORTER_ASSERT(reporter, special_image_to_bitmap(positiveResult2.get(), &positiveResultBM2)); REPORTER_ASSERT(reporter, special_image_to_bitmap(negativeResult1.get(), &negativeResultBM1)); REPORTER_ASSERT(reporter, special_image_to_bitmap(negativeResult2.get(), &negativeResultBM2)); for (int y = 0; y < kHeight; y++) { int diffs = memcmp(positiveResultBM1.getAddr32(0, y), negativeResultBM1.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResultBM1.getAddr32(0, y), negativeResultBM2.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResultBM1.getAddr32(0, y), positiveResultBM2.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterNegativeBlurSigma, reporter) { test_negative_blur_sigma(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu, reporter, ctxInfo) { test_negative_blur_sigma(reporter, ctxInfo.directContext()); } static void test_morphology_radius_with_mirror_ctm(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that SkMorphologyImageFilter maps the radius correctly when the // CTM contains a mirroring transform. static const int kWidth = 32, kHeight = 32; static const int kRadius = 8; sk_sp filter(SkImageFilters::Dilate(kRadius, kRadius, nullptr)); SkBitmap bitmap; bitmap.allocN32Pixels(kWidth, kHeight); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); SkPaint paint; paint.setColor(SK_ColorWHITE); canvas.drawRect(SkRect::MakeXYWH(kWidth / 4, kHeight / 4, kWidth / 2, kHeight / 2), paint); sk_sp image = SkImage::MakeFromBitmap(bitmap); sk_sp imgSrc( SkSpecialImage::MakeFromImage(rContext, SkIRect::MakeWH(kWidth, kHeight), image)); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, imgSrc.get()); sk_sp normalResult( as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, normalResult); SkMatrix mirrorX; mirrorX.setTranslate(0, SkIntToScalar(32)); mirrorX.preScale(SK_Scalar1, -SK_Scalar1); SkImageFilter_Base::Context mirrorXCTX(mirrorX, SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, imgSrc.get()); sk_sp mirrorXResult( as_IFB(filter)->filterImage(mirrorXCTX).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, mirrorXResult); SkMatrix mirrorY; mirrorY.setTranslate(SkIntToScalar(32), 0); mirrorY.preScale(-SK_Scalar1, SK_Scalar1); SkImageFilter_Base::Context mirrorYCTX(mirrorY, SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, imgSrc.get()); sk_sp mirrorYResult( as_IFB(filter)->filterImage(mirrorYCTX).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, mirrorYResult); SkBitmap normalResultBM, mirrorXResultBM, mirrorYResultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(normalResult.get(), &normalResultBM)); REPORTER_ASSERT(reporter, special_image_to_bitmap(mirrorXResult.get(), &mirrorXResultBM)); REPORTER_ASSERT(reporter, special_image_to_bitmap(mirrorYResult.get(), &mirrorYResultBM)); for (int y = 0; y < kHeight; y++) { int diffs = memcmp(normalResultBM.getAddr32(0, y), mirrorXResultBM.getAddr32(0, y), normalResultBM.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(normalResultBM.getAddr32(0, y), mirrorYResultBM.getAddr32(0, y), normalResultBM.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(MorphologyFilterRadiusWithMirrorCTM, reporter) { test_morphology_radius_with_mirror_ctm(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(MorphologyFilterRadiusWithMirrorCTM_Gpu, reporter, ctxInfo) { test_morphology_radius_with_mirror_ctm(reporter, ctxInfo.directContext()); } static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly. SkIRect cropRect = SkIRect::MakeXYWH(5, 0, 5, 10); sk_sp input(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); sk_sp filter(SkImageFilters::Blur(0, 0, std::move(input), &cropRect)); sk_sp surf(create_empty_special_surface(rContext, 10)); surf->getCanvas()->clear(SK_ColorGREEN); sk_sp image(surf->makeImageSnapshot()); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr, kN32_SkColorType, nullptr, image.get()); sk_sp result(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10); SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(result.get(), &resultBM)); for (int y = 0; y < resultBM.height(); y++) { for (int x = 0; x < resultBM.width(); x++) { bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN; REPORTER_ASSERT(reporter, !diff); if (diff) { break; } } } } DEF_TEST(ImageFilterZeroBlurSigma, reporter) { test_zero_blur_sigma(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu, reporter, ctxInfo) { test_zero_blur_sigma(reporter, ctxInfo.directContext()); } // Tests that, even when an upstream filter has returned null (due to failure or clipping), a // downstream filter that affects transparent black still does so even with a nullptr input. static void test_fail_affects_transparent_black(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp failFilter(new FailImageFilter()); sk_sp source(create_empty_special_image(rContext, 5)); SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 1, 1), nullptr, kN32_SkColorType, nullptr, source.get()); sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); SkASSERT(as_CFB(green)->affectsTransparentBlack()); sk_sp greenFilter(SkImageFilters::ColorFilter(std::move(green), std::move(failFilter))); SkIPoint offset; sk_sp result(as_IFB(greenFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, nullptr != result.get()); if (result) { SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(result.get(), &resultBM)); REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN); } } DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) { test_fail_affects_transparent_black(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu, reporter, ctxInfo) { test_fail_affects_transparent_black(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterDrawTiled, reporter) { // Check that all filters when drawn tiled (with subsequent clip rects) exactly // match the same filters drawn with a single full-canvas bitmap draw. // Tests pass by not asserting. FilterList filters(nullptr); SkBitmap untiledResult, tiledResult; const int width = 64, height = 64; untiledResult.allocN32Pixels(width, height); tiledResult.allocN32Pixels(width, height); SkCanvas tiledCanvas(tiledResult); SkCanvas untiledCanvas(untiledResult); const int tileSize = 8; SkPaint textPaint; textPaint.setColor(SK_ColorWHITE); SkFont font(ToolUtils::create_portable_typeface(), height); const char* text = "ABC"; const SkScalar yPos = SkIntToScalar(height); for (int scale = 1; scale <= 2; ++scale) { for (int i = 0; i < filters.count(); ++i) { SkPaint combinedPaint; combinedPaint.setColor(SK_ColorWHITE); combinedPaint.setImageFilter(sk_ref_sp(filters.getFilter(i))); untiledCanvas.clear(SK_ColorTRANSPARENT); untiledCanvas.save(); untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); untiledCanvas.drawString(text, 0, yPos, font, combinedPaint); untiledCanvas.restore(); tiledCanvas.clear(SK_ColorTRANSPARENT); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { tiledCanvas.save(); const SkRect clipRect = SkRect::MakeXYWH(x, y, tileSize, tileSize); tiledCanvas.clipRect(clipRect); if (filters.needsSaveLayer(i)) { const SkRect layerBounds = SkRect::MakeIWH(width, height); tiledCanvas.saveLayer(&layerBounds, &combinedPaint); tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawString(text, 0, yPos, font, textPaint); tiledCanvas.restore(); } else { tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawString(text, 0, yPos, font, combinedPaint); } tiledCanvas.restore(); } } if (!ToolUtils::equal_pixels(untiledResult, tiledResult)) { REPORTER_ASSERT(reporter, false, filters.getName(i)); break; } } } } static void draw_saveLayer_picture(int width, int height, int tileSize, SkBBHFactory* factory, SkBitmap* result) { SkMatrix matrix; matrix.setTranslate(SkIntToScalar(50), 0); sk_sp cf(SkColorFilters::Blend(SK_ColorWHITE, SkBlendMode::kSrc)); sk_sp cfif(SkImageFilters::ColorFilter(std::move(cf), nullptr)); sk_sp imageFilter(SkImageFilter::MakeMatrixFilter(matrix, kNone_SkFilterQuality, std::move(cfif))); SkPaint paint; paint.setImageFilter(std::move(imageFilter)); SkPictureRecorder recorder; SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50)); SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width), SkIntToScalar(height), factory, 0); recordingCanvas->translate(-55, 0); recordingCanvas->saveLayer(&bounds, &paint); recordingCanvas->restore(); sk_sp picture1(recorder.finishRecordingAsPicture()); result->allocN32Pixels(width, height); SkCanvas canvas(*result); canvas.clear(0); canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize))); canvas.drawPicture(picture1.get()); } DEF_TEST(ImageFilterDrawMatrixBBH, reporter) { // Check that matrix filter when drawn tiled with BBH exactly // matches the same thing drawn without BBH. // Tests pass by not asserting. const int width = 200, height = 200; const int tileSize = 100; SkBitmap result1, result2; SkRTreeFactory factory; draw_saveLayer_picture(width, height, tileSize, &factory, &result1); draw_saveLayer_picture(width, height, tileSize, nullptr, &result2); for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } static sk_sp make_blur(sk_sp input) { return SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(input)); } static sk_sp make_drop_shadow(sk_sp input) { return SkImageFilters::DropShadow(100, 100, 10, 10, SK_ColorBLUE, std::move(input)); } DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) { sk_sp filter1(make_blur(nullptr)); sk_sp filter2(make_drop_shadow(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); bounds = filter2->filterBounds(bounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) { sk_sp filter1(make_drop_shadow(nullptr)); sk_sp filter2(make_blur(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); bounds = filter2->filterBounds(bounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) { sk_sp filter1(SkImageFilters::Dilate(2, 2, nullptr)); sk_sp filter2(make_drop_shadow(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234); bounds = filter2->filterBounds(bounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterScaledBlurRadius, reporter) { // Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow // (before the CTM). Bounds should be computed correctly in the presence of // a (possibly negative) scale. sk_sp blur(make_blur(nullptr)); sk_sp dropShadow(make_drop_shadow(nullptr)); { // Uniform scale by 2. SkMatrix scaleMatrix; scaleMatrix.setScale(2, 2); SkIRect bounds = SkIRect::MakeLTRB(0, 0, 200, 200); SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206); SkIRect blurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds); SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460); SkIRect shadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds); SkIRect expectedReverseShadowBounds = SkIRect::MakeLTRB(-260, -260, 200, 200); SkIRect reverseShadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds); } { // Vertical flip. SkMatrix scaleMatrix; scaleMatrix.setScale(1, -1); SkIRect bounds = SkIRect::MakeLTRB(0, -100, 100, 0); SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3); SkIRect blurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds); SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0); SkIRect shadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds); SkIRect expectedReverseShadowBounds = SkIRect::MakeLTRB(-130, -100, 100, 130); SkIRect reverseShadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds); REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds); } } DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) { sk_sp filter1(make_blur(nullptr)); sk_sp filter2(make_blur(nullptr)); sk_sp composedFilter(SkImageFilters::Compose(std::move(filter1), std::move(filter2))); SkRect boundsSrc = SkRect::MakeIWH(100, 100); SkRect expectedBounds = SkRect::MakeXYWH(-6, -6, 112, 112); SkRect boundsDst = composedFilter->computeFastBounds(boundsSrc); REPORTER_ASSERT(reporter, boundsDst == expectedBounds); } DEF_TEST(ImageFilterUnionBounds, reporter) { sk_sp offset(SkImageFilters::Offset(50, 0, nullptr)); // Regardless of which order they appear in, the image filter bounds should // be combined correctly. { sk_sp composite(SkImageFilters::Xfermode(SkBlendMode::kSrcOver, offset)); SkRect bounds = SkRect::MakeIWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); } { sk_sp composite(SkImageFilters::Xfermode(SkBlendMode::kSrcOver, nullptr, offset, nullptr)); SkRect bounds = SkRect::MakeIWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); } } static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter, GrRecordingContext* rContext) { SkBitmap greenBM; greenBM.allocN32Pixels(20, 20); greenBM.eraseColor(SK_ColorGREEN); sk_sp greenImage(SkImage::MakeFromBitmap(greenBM)); sk_sp source(SkImageFilters::Image(std::move(greenImage))); sk_sp merge(SkImageFilters::Merge(source, source)); sk_sp srcImg(create_empty_special_image(rContext, 1)); SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 100, 100), nullptr, kN32_SkColorType, nullptr, srcImg.get()); SkIPoint offset; sk_sp resultImg(as_IFB(merge)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20); } DEF_TEST(ImageFilterMergeResultSize, reporter) { test_imagefilter_merge_result_size(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu, reporter, ctxInfo) { test_imagefilter_merge_result_size(reporter, ctxInfo.directContext()); } static void draw_blurred_rect(SkCanvas* canvas) { SkPaint filterPaint; filterPaint.setColor(SK_ColorWHITE); filterPaint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(8), 0, nullptr)); canvas->saveLayer(nullptr, &filterPaint); SkPaint whitePaint; whitePaint.setColor(SK_ColorWHITE); canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint); canvas->restore(); } static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) { canvas->save(); canvas->clipRect(clipRect); canvas->drawPicture(picture); canvas->restore(); } DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) { // Check that the blur filter when recorded with RTree acceleration, // and drawn tiled (with subsequent clip rects) exactly // matches the same filter drawn with without RTree acceleration. // This tests that the "bleed" from the blur into the otherwise-blank // tiles is correctly rendered. // Tests pass by not asserting. int width = 16, height = 8; SkBitmap result1, result2; result1.allocN32Pixels(width, height); result2.allocN32Pixels(width, height); SkCanvas canvas1(result1); SkCanvas canvas2(result2); int tileSize = 8; canvas1.clear(0); canvas2.clear(0); SkRTreeFactory factory; SkPictureRecorder recorder1, recorder2; // The only difference between these two pictures is that one has RTree aceleration. SkCanvas* recordingCanvas1 = recorder1.beginRecording(width, height, nullptr, 0); SkCanvas* recordingCanvas2 = recorder2.beginRecording(width, height, &factory, 0); draw_blurred_rect(recordingCanvas1); draw_blurred_rect(recordingCanvas2); sk_sp picture1(recorder1.finishRecordingAsPicture()); sk_sp picture2(recorder2.finishRecordingAsPicture()); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)); draw_picture_clipped(&canvas1, tileRect, picture1.get()); draw_picture_clipped(&canvas2, tileRect, picture2.get()); } } for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterMatrixConvolution, reporter) { // Check that a 1x3 filter does not cause a spurious assert. SkScalar kernel[3] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(1, 3); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr)); SkBitmap result; int width = 16, height = 16; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint paint; paint.setImageFilter(std::move(filter)); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); canvas.drawRect(rect, paint); } DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) { // Check that a filter with borders outside the target bounds // does not crash. SkScalar kernel[3] = { 0, 0, 0, }; SkISize kernelSize = SkISize::Make(3, 1); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(2, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr)); SkBitmap result; int width = 10, height = 10; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint filterPaint; filterPaint.setImageFilter(std::move(filter)); SkRect bounds = SkRect::MakeIWH(1, 10); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); SkPaint rectPaint; canvas.saveLayer(&bounds, &filterPaint); canvas.drawRect(rect, rectPaint); canvas.restore(); } static void test_big_kernel(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that a kernel that is too big for the GPU still works SkScalar identityKernel[49] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; SkISize kernelSize = SkISize::Make(7, 7); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, identityKernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr)); sk_sp srcImg(create_empty_special_image(rContext, 100)); SkASSERT(srcImg); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, kN32_SkColorType, nullptr, srcImg.get()); sk_sp resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, SkToBool(rContext) == resultImg->isTextureBacked()); REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100); REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0); } DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) { test_big_kernel(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu, reporter, ctxInfo) { test_big_kernel(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterCropRect, reporter) { test_cropRects(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu, reporter, ctxInfo) { test_cropRects(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterMatrix, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); SkMatrix expectedMatrix = canvas.getTotalMatrix(); SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0); SkPaint paint; paint.setImageFilter(MatrixTestImageFilter::Make(reporter, expectedMatrix)); recordingCanvas->saveLayer(nullptr, &paint); SkPaint solidPaint; solidPaint.setColor(0xFFFFFFFF); recordingCanvas->save(); recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); recordingCanvas->restore(); // scale recordingCanvas->restore(); // saveLayer canvas.drawPicture(recorder.finishRecordingAsPicture()); } static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp picture; { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); picture = recorder.finishRecordingAsPicture(); } sk_sp srcImg(create_empty_special_image(rContext, 2)); sk_sp imageFilter(SkImageFilters::Picture(picture)); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(1, 1, 1, 1), nullptr, kN32_SkColorType, nullptr, srcImg.get()); sk_sp resultImage( as_IFB(imageFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, !resultImage); } DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) { test_clipped_picture_imagefilter(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu, reporter, ctxInfo) { test_clipped_picture_imagefilter(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterEmptySaveLayer, reporter) { // Even when there's an empty saveLayer()/restore(), ensure that an image // filter or color filter which affects transparent black still draws. SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); SkCanvas canvas(bitmap); SkRTreeFactory factory; SkPictureRecorder recorder; sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); sk_sp imageFilter(SkImageFilters::ColorFilter(green, nullptr)); SkPaint imageFilterPaint; imageFilterPaint.setImageFilter(std::move(imageFilter)); SkPaint colorFilterPaint; colorFilterPaint.setColorFilter(green); SkRect bounds = SkRect::MakeIWH(10, 10); SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &imageFilterPaint); recordingCanvas->restore(); sk_sp picture(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(nullptr, &imageFilterPaint); recordingCanvas->restore(); sk_sp picture2(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture2); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &colorFilterPaint); recordingCanvas->restore(); sk_sp picture3(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture3); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); // Check that a blur with a very large radius does not crash or assert. SkPaint paint; paint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr)); canvas->drawBitmap(bitmap, 0, 0, &paint); } DEF_TEST(HugeBlurImageFilter, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_huge_blur(&canvas, reporter); } DEF_TEST(ImageFilterMatrixConvolutionTest, reporter) { SkScalar kernel[1] = { 0 }; SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(1, 1); // Check that an enormous (non-allocatable) kernel gives a nullptr filter. sk_sp conv(SkImageFilters::MatrixConvolution( SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr)); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a nullptr kernel gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a kernel width < 1 gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(0, 1), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that kernel height < 1 gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(1, -1), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); } static void test_xfermode_cropped_input(SkSurface* surf, skiatest::Reporter* reporter) { auto canvas = surf->getCanvas(); canvas->clear(0); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); bitmap.eraseARGB(255, 255, 255, 255); sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrcIn)); sk_sp greenFilter(SkImageFilters::ColorFilter(green, nullptr)); SkIRect cropRect = SkIRect::MakeEmpty(); sk_sp croppedOut(SkImageFilters::ColorFilter(green, nullptr, &cropRect)); // Check that an xfermode image filter whose input has been cropped out still draws the other // input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning. SkBlendMode mode = SkBlendMode::kSrcOver; sk_sp xfermodeNoFg(SkImageFilters::Xfermode( mode, greenFilter, croppedOut, nullptr)); sk_sp xfermodeNoBg(SkImageFilters::Xfermode( mode, croppedOut, greenFilter, nullptr)); sk_sp xfermodeNoFgNoBg(SkImageFilters::Xfermode( mode, croppedOut, croppedOut, nullptr)); SkPaint paint; paint.setImageFilter(std::move(xfermodeNoFg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite uint32_t pixel; SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(std::move(xfermodeNoBg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(std::move(xfermodeNoFgNoBg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(ImageFilterNestedSaveLayer, reporter) { SkBitmap temp; temp.allocN32Pixels(50, 50); SkCanvas canvas(temp); canvas.clear(0x0); SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); bitmap.eraseColor(SK_ColorGREEN); SkMatrix matrix; matrix.setScale(SkIntToScalar(2), SkIntToScalar(2)); matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20)); sk_sp matrixFilter( SkImageFilter::MakeMatrixFilter(matrix, kLow_SkFilterQuality, nullptr)); // Test that saveLayer() with a filter nested inside another saveLayer() applies the // correct offset to the filter matrix. SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30); canvas.saveLayer(&bounds1, nullptr); SkPaint filterPaint; filterPaint.setImageFilter(std::move(matrixFilter)); SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10); canvas.saveLayer(&bounds2, &filterPaint); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); canvas.drawRect(bounds2, greenPaint); canvas.restore(); canvas.restore(); SkPaint strokePaint; strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setColor(SK_ColorRED); SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); uint32_t pixel; temp.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Test that drawSprite() with a filter nested inside a saveLayer() applies the // correct offset to the filter matrix. canvas.clear(0x0); temp.readPixels(info, &pixel, 4, 25, 25); canvas.saveLayer(&bounds1, nullptr); canvas.drawBitmap(bitmap, 20, 20, &filterPaint); // drawSprite canvas.restore(); temp.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(XfermodeImageFilterCroppedInput, reporter) { test_xfermode_cropped_input(SkSurface::MakeRasterN32Premul(100, 100).get(), reporter); } static void test_composed_imagefilter_offset(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp srcImg(create_empty_special_image(rContext, 100)); SkIRect cropRect = SkIRect::MakeXYWH(1, 0, 20, 20); sk_sp offsetFilter(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); sk_sp blurFilter(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, nullptr, &cropRect)); sk_sp composedFilter(SkImageFilters::Compose(std::move(blurFilter), std::move(offsetFilter))); SkIPoint offset; SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, kN32_SkColorType, nullptr, srcImg.get()); sk_sp resultImg( as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0); } DEF_TEST(ComposedImageFilterOffset, reporter) { test_composed_imagefilter_offset(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu, reporter, ctxInfo) { test_composed_imagefilter_offset(reporter, ctxInfo.directContext()); } static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // The bounds passed to the inner filter must be filtered by the outer // filter, so that the inner filter produces the pixels that the outer // filter requires as input. This matters if the outer filter moves pixels. // Here, accounting for the outer offset is necessary so that the green // pixels of the picture are not clipped. SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeIWH(200, 100)); recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100)); recordingCanvas->clear(SK_ColorGREEN); sk_sp picture(recorder.finishRecordingAsPicture()); sk_sp pictureFilter(SkImageFilters::Picture(picture)); SkIRect cropRect = SkIRect::MakeWH(100, 100); sk_sp offsetFilter(SkImageFilters::Offset(-100, 0, nullptr, &cropRect)); sk_sp composedFilter(SkImageFilters::Compose(std::move(offsetFilter), std::move(pictureFilter))); sk_sp sourceImage(create_empty_special_image(rContext, 100)); SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, kN32_SkColorType, nullptr, sourceImage.get()); SkIPoint offset; sk_sp result( as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(&offset)); REPORTER_ASSERT(reporter, offset.isZero()); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100)); SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(result.get(), &resultBM)); REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN); } DEF_TEST(ComposedImageFilterBounds, reporter) { test_composed_imagefilter_bounds(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu, reporter, ctxInfo) { test_composed_imagefilter_bounds(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterCanComputeFastBounds, reporter) { { SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); sk_sp lighting(SkImageFilters::PointLitDiffuse( location, SK_ColorGREEN, 0, 0, nullptr)); REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds()); } { sk_sp gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); { SkColorFilter* grayCF; REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF)); REPORTER_ASSERT(reporter, !as_CFB(grayCF)->affectsTransparentBlack()); grayCF->unref(); } REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); sk_sp grayBlur(SkImageFilters::Blur( SK_Scalar1, SK_Scalar1, std::move(gray))); REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds()); } { float greenMatrix[20] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0f/255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0f/255 }; sk_sp greenCF(SkColorFilters::Matrix(greenMatrix)); sk_sp green(SkImageFilters::ColorFilter(greenCF, nullptr)); REPORTER_ASSERT(reporter, as_CFB(greenCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !green->canComputeFastBounds()); sk_sp greenBlur(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(green))); REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds()); } uint8_t allOne[256], identity[256]; for (int i = 0; i < 256; ++i) { identity[i] = i; allOne[i] = 255; } sk_sp identityCF(SkTableColorFilter::MakeARGB(identity, identity, identity, allOne)); sk_sp identityFilter(SkImageFilters::ColorFilter(identityCF, nullptr)); REPORTER_ASSERT(reporter, !as_CFB(identityCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds()); sk_sp forceOpaqueCF(SkTableColorFilter::MakeARGB(allOne, identity, identity, identity)); sk_sp forceOpaque(SkImageFilters::ColorFilter(forceOpaqueCF, nullptr)); REPORTER_ASSERT(reporter, as_CFB(forceOpaqueCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds()); } // Verify that SkImageSource survives serialization DEF_TEST(ImageFilterImageSourceSerialization, reporter) { auto surface(SkSurface::MakeRasterN32Premul(10, 10)); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp image(surface->makeImageSnapshot()); sk_sp filter(SkImageFilters::Image(std::move(image))); sk_sp data(filter->serialize()); sk_sp unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); REPORTER_ASSERT(reporter, unflattenedFilter); SkBitmap bm; bm.allocN32Pixels(10, 10); bm.eraseColor(SK_ColorBLUE); SkPaint paint; paint.setColor(SK_ColorRED); paint.setImageFilter(unflattenedFilter); SkCanvas canvas(bm); canvas.drawRect(SkRect::MakeIWH(10, 10), paint); REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN)); } DEF_TEST(ImageFilterImageSourceUninitialized, r) { sk_sp data(GetResourceAsData("crbug769134.fil")); if (!data) { return; } sk_sp unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); // This will fail. More importantly, msan will verify that we did not // compare against uninitialized memory. REPORTER_ASSERT(r, !unflattenedFilter); } static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) { SkBitmap largeBmp; int largeW = 5000; int largeH = 5000; // If we're GPU-backed make the bitmap too large to be converted into a texture. if (auto ctx = canvas->recordingContext()) { largeW = ctx->priv().caps()->maxTextureSize() + 1; } largeBmp.allocN32Pixels(largeW, largeH); largeBmp.eraseColor(0); if (!largeBmp.getPixels()) { ERRORF(reporter, "Failed to allocate large bmp."); return; } sk_sp largeImage(SkImage::MakeFromBitmap(largeBmp)); if (!largeImage) { ERRORF(reporter, "Failed to create large image."); return; } sk_sp largeSource(SkImageFilters::Image(std::move(largeImage))); if (!largeSource) { ERRORF(reporter, "Failed to create large SkImageSource."); return; } sk_sp blur(SkImageFilters::Blur(10.f, 10.f, std::move(largeSource))); if (!blur) { ERRORF(reporter, "Failed to create SkBlurImageFilter."); return; } SkPaint paint; paint.setImageFilter(std::move(blur)); // This should not crash (http://crbug.com/570479). canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint); } DEF_TEST(ImageFilterBlurLargeImage, reporter) { auto surface(SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(100, 100))); test_large_blur_input(reporter, surface->getCanvas()); } static void test_make_with_filter(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp surface(create_surface(rContext, 192, 128)); surface->getCanvas()->clear(SK_ColorRED); SkPaint bluePaint; bluePaint.setColor(SK_ColorBLUE); SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50); surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint); sk_sp sourceImage = surface->makeImageSnapshot(); sk_sp filter = make_grayscale(nullptr, nullptr); SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100); SkIRect outSubset; SkIPoint offset; sk_sp result; result = sourceImage->makeWithFilter(rContext, nullptr, subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, clipBounds, nullptr, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, clipBounds, &outSubset, nullptr); REPORTER_ASSERT(reporter, !result); SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000); result = sourceImage->makeWithFilter(rContext, filter.get(), bigSubset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); SkIRect empty = SkIRect::MakeEmpty(); result = sourceImage->makeWithFilter(rContext, filter.get(), empty, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, empty, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); SkIRect leftField = SkIRect::MakeXYWH(-1000, 0, 100, 100); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, leftField, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->bounds().contains(outSubset)); SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(), outSubset.width(), outSubset.height()); REPORTER_ASSERT(reporter, clipBounds.contains(destRect)); // In GPU-mode, this case creates a special image with a backing size that differs from // the content size { clipBounds.setXYWH(0, 0, 170, 100); subset.setXYWH(0, 0, 160, 90); filter = SkImageFilters::Xfermode(SkBlendMode::kSrc, nullptr); result = sourceImage->makeWithFilter(rContext, filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); } } DEF_TEST(ImageFilterMakeWithFilter, reporter) { test_make_with_filter(reporter, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Gpu, reporter, ctxInfo) { test_make_with_filter(reporter, ctxInfo.directContext()); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu, reporter, ctxInfo) { sk_sp surf(SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kNo, SkImageInfo::MakeN32Premul(100, 100))); SkCanvas* canvas = surf->getCanvas(); test_huge_blur(canvas, reporter); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu, reporter, ctxInfo) { sk_sp surf(SkSurface::MakeRenderTarget( ctxInfo.directContext(), SkBudgeted::kNo, SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); test_xfermode_cropped_input(surf.get(), reporter); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu, reporter, ctxInfo) { auto surface(SkSurface::MakeRenderTarget( ctxInfo.directContext(), SkBudgeted::kYes, SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); test_large_blur_input(reporter, surface->getCanvas()); } /* * Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more * than just scale/translate, but that other filters do. */ DEF_TEST(ImageFilterComplexCTM, reporter) { // just need a colorfilter to exercise the corresponding imagefilter sk_sp cf = SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcATop); sk_sp cfif = SkImageFilters::ColorFilter(cf, nullptr); // can handle sk_sp blif = SkImageFilters::Blur(3, 3, nullptr); // cannot handle struct { sk_sp fFilter; bool fExpectCanHandle; } recs[] = { { cfif, true }, { SkImageFilters::ColorFilter(cf, cfif), true }, { SkImageFilters::Merge(cfif, cfif), true }, { SkImageFilters::Compose(cfif, cfif), true }, { blif, false }, { SkImageFilters::Blur(3, 3, cfif), false }, { SkImageFilters::ColorFilter(cf, blif), false }, { SkImageFilters::Merge(cfif, blif), false }, { SkImageFilters::Compose(blif, cfif), false }, }; for (const auto& rec : recs) { const bool canHandle = as_IFB(rec.fFilter)->canHandleComplexCTM(); REPORTER_ASSERT(reporter, canHandle == rec.fExpectCanHandle); } } // Test SkXfermodeImageFilter::filterBounds with different blending modes. DEF_TEST(XfermodeImageFilterBounds, reporter) { SkIRect background_rect = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect foreground_rect = SkIRect::MakeXYWH(50, 50, 100, 100); sk_sp background(new FixedBoundsImageFilter(background_rect)); sk_sp foreground(new FixedBoundsImageFilter(foreground_rect)); const int kModeCount = static_cast(SkBlendMode::kLastMode) + 1; SkIRect expectedBounds[kModeCount]; // Expect union of input rects by default. for (int i = 0; i < kModeCount; ++i) { expectedBounds[i] = background_rect; expectedBounds[i].join(foreground_rect); } SkIRect intersection = background_rect; intersection.intersect(foreground_rect); expectedBounds[static_cast(SkBlendMode::kClear)] = SkIRect::MakeEmpty(); expectedBounds[static_cast(SkBlendMode::kSrc)] = foreground_rect; expectedBounds[static_cast(SkBlendMode::kDst)] = background_rect; expectedBounds[static_cast(SkBlendMode::kSrcIn)] = intersection; expectedBounds[static_cast(SkBlendMode::kDstIn)] = intersection; expectedBounds[static_cast(SkBlendMode::kSrcATop)] = background_rect; expectedBounds[static_cast(SkBlendMode::kDstATop)] = foreground_rect; // The value of this variable doesn't matter because we use inputs with fixed bounds. SkIRect src = SkIRect::MakeXYWH(11, 22, 33, 44); for (int i = 0; i < kModeCount; ++i) { sk_sp xfermode(SkImageFilters::Xfermode(static_cast(i), background, foreground, nullptr)); auto bounds = xfermode->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, bounds == expectedBounds[i]); } // Test empty intersection. sk_sp background2(new FixedBoundsImageFilter(SkIRect::MakeXYWH(0, 0, 20, 20))); sk_sp foreground2(new FixedBoundsImageFilter(SkIRect::MakeXYWH(40, 40, 50, 50))); sk_sp xfermode(SkImageFilters::Xfermode( SkBlendMode::kSrcIn, std::move(background2), std::move(foreground2), nullptr)); auto bounds = xfermode->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, bounds.isEmpty()); } DEF_TEST(OffsetImageFilterBounds, reporter) { SkIRect src = SkIRect::MakeXYWH(0, 0, 100, 100); sk_sp offset(SkImageFilters::Offset(-50.5f, -50.5f, nullptr)); SkIRect expectedForward = SkIRect::MakeXYWH(-50, -50, 100, 100); SkIRect boundsForward = offset->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, boundsForward == expectedForward); SkIRect expectedReverse = SkIRect::MakeXYWH(50, 50, 100, 100); SkIRect boundsReverse = offset->filterBounds(src, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &src); REPORTER_ASSERT(reporter, boundsReverse == expectedReverse); } static void test_arithmetic_bounds(skiatest::Reporter* reporter, float k1, float k2, float k3, float k4, sk_sp background, sk_sp foreground, const SkIRect* crop, const SkIRect& expected) { sk_sp arithmetic( SkImageFilters::Arithmetic(k1, k2, k3, k4, false, background, foreground, crop)); // The value of the input rect doesn't matter because we use inputs with fixed bounds. SkIRect bounds = arithmetic->filterBounds(SkIRect::MakeXYWH(11, 22, 33, 44), SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, expected == bounds); } static void test_arithmetic_combinations(skiatest::Reporter* reporter, float v) { SkIRect bgRect = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect fgRect = SkIRect::MakeXYWH(50, 50, 100, 100); sk_sp background(new FixedBoundsImageFilter(bgRect)); sk_sp foreground(new FixedBoundsImageFilter(fgRect)); SkIRect unionRect = bgRect; unionRect.join(fgRect); SkIRect intersection = bgRect; intersection.intersect(fgRect); test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, nullptr, SkIRect::MakeEmpty()); test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, nullptr, bgRect); test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, nullptr, fgRect); test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, nullptr, intersection); test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, nullptr, bgRect); test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, nullptr, fgRect); test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, nullptr, unionRect); // Test with crop. When k4 is non-zero, the result is expected to be cropRect // regardless of inputs because the filter affects the whole crop area. SkIRect cropRect = SkIRect::MakeXYWH(-111, -222, 333, 444); test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, &cropRect, SkIRect::MakeEmpty()); test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, &cropRect, bgRect); test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, &cropRect, fgRect); test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, &cropRect, unionRect); test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, &cropRect, intersection); test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, &cropRect, bgRect); test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, &cropRect, fgRect); test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, &cropRect, unionRect); test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, &cropRect, cropRect); } // Test SkArithmeticImageFilter::filterBounds with different blending modes. DEF_TEST(ArithmeticImageFilterBounds, reporter) { test_arithmetic_combinations(reporter, 1); test_arithmetic_combinations(reporter, 0.5); } // Test SkImageSource::filterBounds. DEF_TEST(ImageSourceBounds, reporter) { sk_sp image(SkImage::MakeFromBitmap(make_gradient_circle(64, 64))); // Default src and dst rects. sk_sp source1(SkImageFilters::Image(image)); SkIRect imageBounds = SkIRect::MakeWH(64, 64); SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40)); REPORTER_ASSERT(reporter, imageBounds == source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, input == source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input)); SkMatrix scale(SkMatrix::Scale(2, 2)); SkIRect scaledBounds = SkIRect::MakeWH(128, 128); REPORTER_ASSERT(reporter, scaledBounds == source1->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, input == source1->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input)); // Specified src and dst rects. SkRect src(SkRect::MakeXYWH(0.5, 0.5, 100.5, 100.5)); SkRect dst(SkRect::MakeXYWH(-10.5, -10.5, 120.5, 120.5)); sk_sp source2(SkImageFilters::Image(image, src, dst, kMedium_SkFilterQuality)); REPORTER_ASSERT(reporter, dst.roundOut() == source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, input == source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input)); scale.mapRect(&dst); scale.mapRect(&src); REPORTER_ASSERT(reporter, dst.roundOut() == source2->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, input == source2->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input)); }