/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkPathPriv.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrOpFlushState.h" #include "src/gpu/tessellate/GrMiddleOutPolygonTriangulator.h" #include "src/gpu/tessellate/GrPathTessellateOp.h" #include "src/gpu/tessellate/GrResolveLevelCounter.h" #include "src/gpu/tessellate/GrStrokePatchBuilder.h" #include "src/gpu/tessellate/GrWangsFormula.h" #include "tools/ToolUtils.h" // This is the number of cubics in desk_chalkboard.skp. (There are no quadratics in the chalkboard.) constexpr static int kNumCubicsInChalkboard = 47182; static SkPath make_cubic_path() { SkRandom rand; SkPath path; for (int i = 0; i < kNumCubicsInChalkboard/2; ++i) { float x = std::ldexp(rand.nextF(), (i % 18)) / 1e3f; path.cubicTo(111.625f*x, 308.188f*x, 764.62f*x, -435.688f*x, 742.63f*x, 85.187f*x); path.cubicTo(764.62f*x, -435.688f*x, 111.625f*x, 308.188f*x, 0, 0); } return path; } // This is a dummy GrMeshDrawOp::Target implementation that just gives back pointers into // pre-allocated CPU buffers, rather than allocating and mapping GPU buffers. class BenchmarkTarget : public GrMeshDrawOp::Target { public: BenchmarkTarget() { GrMockOptions mockOptions; mockOptions.fDrawInstancedSupport = true; mockOptions.fMaxTessellationSegments = 64; mockOptions.fMapBufferFlags = GrCaps::kCanMap_MapFlag; mockOptions.fConfigOptions[(int)GrColorType::kAlpha_8].fRenderability = GrMockOptions::ConfigOptions::Renderability::kMSAA; mockOptions.fConfigOptions[(int)GrColorType::kAlpha_8].fTexturable = true; mockOptions.fIntegerSupport = true; GrContextOptions ctxOptions; ctxOptions.fGpuPathRenderers = GpuPathRenderers::kTessellation; fMockContext = GrDirectContext::MakeMock(&mockOptions, ctxOptions); } const GrDirectContext* mockContext() const { return fMockContext.get(); } const GrCaps& caps() const override { return *fMockContext->priv().caps(); } GrThreadSafeCache* threadSafeCache() const override { return fMockContext->priv().threadSafeCache(); } GrResourceProvider* resourceProvider() const override { return fMockContext->priv().resourceProvider(); } GrSmallPathAtlasMgr* smallPathAtlasManager() const override { return nullptr; } void resetAllocator() { fAllocator.reset(); } SkArenaAlloc* allocator() override { return &fAllocator; } void putBackVertices(int vertices, size_t vertexStride) override { /* no-op */ } void* makeVertexSpace(size_t vertexSize, int vertexCount, sk_sp*, int* startVertex) override { if (vertexSize * vertexCount > sizeof(fStaticVertexData)) { SK_ABORT("FATAL: wanted %zu bytes of static vertex data; only have %zu.\n", vertexSize * vertexCount, sizeof(fStaticVertexData)); } *startVertex = 0; return fStaticVertexData; } void* makeVertexSpaceAtLeast(size_t vertexSize, int minVertexCount, int fallbackVertexCount, sk_sp*, int* startVertex, int* actualVertexCount) override { if (vertexSize * minVertexCount > sizeof(fStaticVertexData)) { SK_ABORT("FATAL: wanted %zu bytes of static vertex data; only have %zu.\n", vertexSize * minVertexCount, sizeof(fStaticVertexData)); } *startVertex = 0; *actualVertexCount = sizeof(fStaticVertexData) / vertexSize; return fStaticVertexData; } GrDrawIndexedIndirectCommand* makeDrawIndexedIndirectSpace( int drawCount, sk_sp* buffer, size_t* offsetInBytes) override { int staticBufferCount = (int)SK_ARRAY_COUNT(fStaticDrawIndexedIndirectData); if (drawCount > staticBufferCount) { SK_ABORT("FATAL: wanted %i static drawIndexedIndirect elements; only have %i.\n", drawCount, staticBufferCount); } return fStaticDrawIndexedIndirectData; } #define UNIMPL(...) __VA_ARGS__ override { SK_ABORT("unimplemented."); } UNIMPL(void recordDraw(const GrGeometryProcessor*, const GrSimpleMesh[], int, const GrSurfaceProxy* const[], GrPrimitiveType)) UNIMPL(uint16_t* makeIndexSpace(int, sk_sp*, int*)) UNIMPL(uint16_t* makeIndexSpaceAtLeast(int, int, sk_sp*, int*, int*)) UNIMPL(GrDrawIndirectCommand* makeDrawIndirectSpace(int, sk_sp*, size_t*)) UNIMPL(void putBackIndices(int)) UNIMPL(GrRenderTargetProxy* proxy() const) UNIMPL(const GrSurfaceProxyView* writeView() const) UNIMPL(const GrAppliedClip* appliedClip() const) UNIMPL(GrAppliedClip detachAppliedClip()) UNIMPL(const GrXferProcessor::DstProxyView& dstProxyView() const) UNIMPL(GrXferBarrierFlags renderPassBarriers() const) UNIMPL(GrStrikeCache* strikeCache() const) UNIMPL(GrAtlasManager* atlasManager() const) UNIMPL(SkTArray* sampledProxyArray()) UNIMPL(GrDeferredUploadTarget* deferredUploadTarget()) #undef UNIMPL private: sk_sp fMockContext; SkPoint fStaticVertexData[4800000]; GrDrawIndexedIndirectCommand fStaticDrawIndexedIndirectData[32]; SkSTArenaAllocWithReset<1024 * 1024> fAllocator; }; // This serves as a base class for benchmarking individual methods on GrPathTessellateOp. class GrPathTessellateOp::TestingOnly_Benchmark : public Benchmark { public: TestingOnly_Benchmark(const char* subName, SkPath path, const SkMatrix& m) : fOp(m, path, GrPaint(), GrAAType::kMSAA, GrTessellationPathRenderer::OpFlags::kNone) { fName.printf("tessellate_%s", subName); } const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) final { return backend == kNonRendering_Backend; } class prepareMiddleOutStencilGeometry; class prepareMiddleOutStencilGeometry_indirect; class prepareIndirectOuterCubics; class prepareTessellatedOuterCubics; class prepareTessellatedCubicWedges; class wangs_formula_cubic_log2; class wangs_formula_cubic_log2_scale; class wangs_formula_cubic_log2_affine; class middle_out_triangulation; private: void onDraw(int loops, SkCanvas*) final { if (!fTarget.mockContext()) { SkDebugf("ERROR: could not create mock context."); return; } for (int i = 0; i < loops; ++i) { fOp.fTriangleBuffer.reset(); fOp.fTriangleVertexCount = 0; fOp.fPipelineForStencils = nullptr; fOp.fPipelineForFills = nullptr; fOp.fStencilTrianglesProgram = nullptr; fOp.fFillTrianglesProgram = nullptr; fOp.fCubicBuffer.reset(); fOp.fCubicVertexCount = 0; // Make fStencilCubicsProgram non-null to keep assertions happy. fOp.fStencilCubicsProgram = (GrProgramInfo*)-1; fOp.fFillPathProgram = nullptr; this->runBench(&fTarget, &fOp); fTarget.resetAllocator(); } } virtual void runBench(GrMeshDrawOp::Target*, GrPathTessellateOp*) = 0; GrPathTessellateOp fOp; BenchmarkTarget fTarget; SkString fName; }; #define DEF_PATH_TESS_BENCH(NAME, PATH, MATRIX, TARGET, OP) \ class GrPathTessellateOp::TestingOnly_Benchmark::NAME \ : public GrPathTessellateOp::TestingOnly_Benchmark { \ public: \ NAME() : TestingOnly_Benchmark(#NAME, (PATH), (MATRIX)) {} \ void runBench(GrMeshDrawOp::Target* target, GrPathTessellateOp* op) override; \ }; \ DEF_BENCH( return new GrPathTessellateOp::TestingOnly_Benchmark::NAME(); ); \ void GrPathTessellateOp::TestingOnly_Benchmark::NAME::runBench( \ GrMeshDrawOp::Target* TARGET, GrPathTessellateOp* op) DEF_PATH_TESS_BENCH(prepareMiddleOutStencilGeometry, make_cubic_path(), SkMatrix::I(), target, op) { // Make fStencilTrianglesProgram non-null so we benchmark the tessellation path with separate // triangles. op->fStencilTrianglesProgram = (GrProgramInfo*)-1; op->prepareMiddleOutTrianglesAndCubics(target); } DEF_PATH_TESS_BENCH(prepareMiddleOutStencilGeometry_indirect, make_cubic_path(), SkMatrix::I(), target, op) { GrResolveLevelCounter resolveLevelCounter; op->prepareMiddleOutTrianglesAndCubics(target, &resolveLevelCounter); } DEF_PATH_TESS_BENCH(prepareIndirectOuterCubics, make_cubic_path(), SkMatrix::I(), target, op) { GrResolveLevelCounter resolveLevelCounter; resolveLevelCounter.reset(op->fPath, SkMatrix::I(), 4); op->prepareIndirectOuterCubics(target, resolveLevelCounter); } DEF_PATH_TESS_BENCH(prepareTessellatedOuterCubics, make_cubic_path(), SkMatrix::I(), target, op) { op->prepareTessellatedOuterCubics(target, kNumCubicsInChalkboard); } DEF_PATH_TESS_BENCH(prepareTessellatedCubicWedges, make_cubic_path(), SkMatrix::I(), target, op) { op->prepareTessellatedCubicWedges(target); } static void benchmark_wangs_formula_cubic_log2(const SkMatrix& matrix, const SkPath& path) { int sum = 0; GrVectorXform xform(matrix); for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) { if (verb == SkPathVerb::kCubic) { sum += GrWangsFormula::cubic_log2(4, pts, xform); } } // Don't let the compiler optimize away GrWangsFormula::cubic_log2. if (sum <= 0) { SK_ABORT("sum should be > 0."); } } DEF_PATH_TESS_BENCH(wangs_formula_cubic_log2, make_cubic_path(), SkMatrix::I(), target, op) { benchmark_wangs_formula_cubic_log2(op->fViewMatrix, op->fPath); } DEF_PATH_TESS_BENCH(wangs_formula_cubic_log2_scale, make_cubic_path(), SkMatrix::Scale(1.1f, 0.9f), target, op) { benchmark_wangs_formula_cubic_log2(op->fViewMatrix, op->fPath); } DEF_PATH_TESS_BENCH(wangs_formula_cubic_log2_affine, make_cubic_path(), SkMatrix::MakeAll(.9f,0.9f,0, 1.1f,1.1f,0, 0,0,1), target, op) { benchmark_wangs_formula_cubic_log2(op->fViewMatrix, op->fPath); } DEF_PATH_TESS_BENCH(middle_out_triangulation, ToolUtils::make_star(SkRect::MakeWH(500, 500), kNumCubicsInChalkboard), SkMatrix::I(), target, op) { int baseVertex; auto vertexData = static_cast(target->makeVertexSpace( sizeof(SkPoint), kNumCubicsInChalkboard, nullptr, &baseVertex)); GrMiddleOutPolygonTriangulator middleOut(vertexData, 3, kNumCubicsInChalkboard + 2); for (auto [verb, pts, w] : SkPathPriv::Iterate(op->fPath)) { switch (verb) { case SkPathVerb::kMove: middleOut.closeAndMove(pts[0]); break; case SkPathVerb::kLine: middleOut.pushVertex(pts[1]); break; case SkPathVerb::kClose: middleOut.close(); break; case SkPathVerb::kQuad: case SkPathVerb::kConic: case SkPathVerb::kCubic: SkUNREACHABLE; } middleOut.closeAndMove(pts[0]); } } class StrokePatchBuilderBench : public Benchmark { public: StrokePatchBuilderBench(float matrixScale, const char* suffix) : fMatrixScale(matrixScale) { fName.printf("tessellate_StrokePatchBuilder%s", suffix); } private: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) final { return backend == kNonRendering_Backend; } void onDelayedSetup() override { fPath.reset().moveTo(0, 0); for (int i = 0; i < kNumCubicsInChalkboard/2; ++i) { fPath.cubicTo(100, 0, 50, 100, 100, 100); fPath.cubicTo(0, -100, 200, 100, 0, 0); } fStrokeRec.setStrokeStyle(8); fStrokeRec.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kMiter_Join, 4); } void onDraw(int loops, SkCanvas*) final { if (!fTarget.mockContext()) { SkDebugf("ERROR: could not create mock context."); return; } for (int i = 0; i < loops; ++i) { fPatchChunks.reset(); // TODO: Combine GrStrokePatchBuilder with GrStrokeTessellateOp. float parametricIntolerance = GrTessellationPathRenderer::kLinearizationIntolerance * fMatrixScale; float numRadialSegmentsPerRadian = .5f / acosf(1 - 2/(parametricIntolerance * fStrokeRec.getWidth())); GrStrokePatchBuilder builder(&fTarget, &fPatchChunks, fStrokeRec, parametricIntolerance, numRadialSegmentsPerRadian, fPath.countVerbs()); builder.addPath(fPath); } } const float fMatrixScale; SkString fName; BenchmarkTarget fTarget; SkPath fPath; SkStrokeRec fStrokeRec = SkStrokeRec(SkStrokeRec::kFill_InitStyle); SkSTArray<8, GrStrokePatchBuilder::PatchChunk> fPatchChunks; }; DEF_BENCH( return new StrokePatchBuilderBench(1, ""); ) DEF_BENCH( return new StrokePatchBuilderBench(5, "_one_chop"); )