/* * Copyright 2021 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include #include "experimental/lowp-basic/QMath.h" struct Stats { int64_t diff_8_bits = 0; int64_t max_diff = 0; int64_t min_diff = 0; int64_t total = 0; void log(int16_t golden, int16_t candidate) { int64_t diff = candidate - golden; max_diff = std::max(max_diff, diff); min_diff = std::min(min_diff, diff); diff_8_bits += candidate != golden; total++; } void print() const { printf("8-bit diff: %lld - %g%%\n", diff_8_bits, 100.0 * diff_8_bits / total); printf("differences min: %lld max: %lld\n", min_diff, max_diff); printf("total: %lld\n", total); } }; // This has all kinds of rounding issues. // TODO(herb): figure out rounding problems with this code. static float golden_bilerp(float tx, float ty, int16_t p00, int16_t p10, int16_t p01, int16_t p11) { return (1.0f-tx) * (1.0f-ty) * p00 + (1.0f-tx) * ty * p01 + (1.0f-ty) * tx * p10 + tx * ty * p11; } static double golden_bilerp2( float tx, float ty, int16_t p00, int16_t p10, int16_t p01, int16_t p11) { // Double is needed to avoid rounding of lower bits. double dtx(tx), dty(ty); double top = (1.0 - dtx) * p00 + dtx * p10; double bottom = (1.0 - dtx) * p01 + dtx * p11; return (1.0 - dty) * top + dty * bottom; } static int16_t full_res_bilerp( float tx, float ty, int16_t p00, int16_t p10, int16_t p01, int16_t p11) { int32_t ftx(floor(tx * 65536.0f + 0.5f)); int64_t top = ftx * (p10 - p00) + 65536 * p00; int64_t bottom = ftx * (p11 - p01) + 65536 * p01; int64_t fty(floor(ty * 65536.0f + 0.5f)); int64_t temp = fty * (bottom - top) + top * 65536LL; int64_t rounded = temp + (1LL << 31); return rounded >> 32; } static int16_t bilerp_1(float tx, float ty, int16_t p00, int16_t p10, int16_t p01, int16_t p11) { const int logPixelScale = 7; const int16_t half = 1 << logPixelScale; I16 qtx = floor(tx * 65536.0f - 32768.0f + 0.5f); I16 qw = (p10 - p00) << logPixelScale; U16 qm = (p10 + p00) << logPixelScale; I16 top = (I16)((U16)(constrained_add(simulate_ssse3_mm_mulhrs_epi16(qtx, qw), qm) + 1) >> 1); qw = (p11 - p01) << logPixelScale; qm = (p11 + p01) << logPixelScale; I16 bottom = (I16)((U16)(constrained_add(simulate_ssse3_mm_mulhrs_epi16(qtx, qw), qm) + 1) >> 1); I16 qty = floor(ty * 65536.0f - 32768.0f + 0.5f); qw = bottom - top; qm = (U16)bottom + (U16)top; U16 scaledAnswer = constrained_add(simulate_ssse3_mm_mulhrs_epi16(qty, qw), qm); return (scaledAnswer[0] + half) >> (logPixelScale + 1); } template static Stats check_bilerp(Bilerp bilerp) { Stats stats; const int step = 1; auto interesting = {0, 1, 2, 3, 4, 5, 6, 7, 8, 60, 61, 62, 63, 64, 65, 66, 67, 68, 124, 125, 126, 127, 128, 129, 130, 131, 132, 188, 189, 190, 191, 192, 193, 194, 195, 196, 248, 249, 250, 251, 252, 253, 254, 255}; for (float tx : {0.0f, 0.25f, 0.5f, 0.75f, 1.0f - 1.0f/65536.0f}) for (float ty : {0.0f, 0.25f, 0.5f, 0.75f, 1.0f - 1.0f/65536.0f}) for (int p00 : interesting) for (int p01 : interesting) for (int p10 : interesting) for (int p11 : interesting) { // Having this be double causes the proper rounding. double l = golden_bilerp2(tx, ty, p00, p10, p01, p11); int16_t golden = floor(l + 0.5); //l = golden_bilerp(tx, ty, p00, p10, p01, p11); //int16_t golden2 = floor(l + 0.5f); int16_t candidate = bilerp(tx, ty, p00, p10, p01, p11); stats.log(golden, candidate); } return stats; } int main() { Stats stats; printf("\nUsing trunc_bilerp...\n"); stats = check_bilerp(bilerp_1); stats.print(); printf("\nUsing full_res_bilerp...\n"); stats = check_bilerp(full_res_bilerp); stats.print(); printf("Done.\n"); return 0; }