/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk4px.h" #include "SkNx.h" #include "SkRandom.h" #include "Test.h" template static void test_Nf(skiatest::Reporter* r) { auto assert_nearly_eq = [&](double eps, const SkNf& v, T a, T b, T c, T d) { auto close = [=](T a, T b) { return fabs(a-b) <= eps; }; T vals[4]; v.store(vals); bool ok = close(vals[0], a) && close(vals[1], b) && close(v.template kth<0>(), a) && close(v.template kth<1>(), b); REPORTER_ASSERT(r, ok); if (N == 4) { ok = close(vals[2], c) && close(vals[3], d) && close(v.template kth<2>(), c) && close(v.template kth<3>(), d); REPORTER_ASSERT(r, ok); } }; auto assert_eq = [&](const SkNf& v, T a, T b, T c, T d) { return assert_nearly_eq(0, v, a,b,c,d); }; T vals[] = {3, 4, 5, 6}; SkNf a = SkNf::Load(vals), b(a), c = a; SkNf d; d = a; assert_eq(a, 3, 4, 5, 6); assert_eq(b, 3, 4, 5, 6); assert_eq(c, 3, 4, 5, 6); assert_eq(d, 3, 4, 5, 6); assert_eq(a+b, 6, 8, 10, 12); assert_eq(a*b, 9, 16, 25, 36); assert_eq(a*b-b, 6, 12, 20, 30); assert_eq((a*b).sqrt(), 3, 4, 5, 6); assert_eq(a/b, 1, 1, 1, 1); assert_eq(SkNf(0)-a, -3, -4, -5, -6); SkNf fours(4); assert_eq(fours.sqrt(), 2,2,2,2); assert_nearly_eq(0.001, fours.rsqrt0(), 0.5, 0.5, 0.5, 0.5); assert_nearly_eq(0.001, fours.rsqrt1(), 0.5, 0.5, 0.5, 0.5); assert_nearly_eq(0.001, fours.rsqrt2(), 0.5, 0.5, 0.5, 0.5); assert_eq( fours. invert(), 0.25, 0.25, 0.25, 0.25); assert_nearly_eq(0.001, fours.approxInvert(), 0.25, 0.25, 0.25, 0.25); assert_eq(SkNf::Min(a, fours), 3, 4, 4, 4); assert_eq(SkNf::Max(a, fours), 4, 4, 5, 6); // Test some comparisons. This is not exhaustive. REPORTER_ASSERT(r, (a == b).allTrue()); REPORTER_ASSERT(r, (a+b == a*b-b).anyTrue()); REPORTER_ASSERT(r, !(a+b == a*b-b).allTrue()); REPORTER_ASSERT(r, !(a+b == a*b).anyTrue()); REPORTER_ASSERT(r, !(a != b).anyTrue()); REPORTER_ASSERT(r, (a < fours).anyTrue()); REPORTER_ASSERT(r, (a <= fours).anyTrue()); REPORTER_ASSERT(r, !(a > fours).allTrue()); REPORTER_ASSERT(r, !(a >= fours).allTrue()); } DEF_TEST(SkNf, r) { test_Nf<2, float>(r); test_Nf<2, double>(r); test_Nf<4, float>(r); test_Nf<4, double>(r); } template void test_Ni(skiatest::Reporter* r) { auto assert_eq = [&](const SkNi& v, T a, T b, T c, T d, T e, T f, T g, T h) { T vals[8]; v.store(vals); switch (N) { case 8: REPORTER_ASSERT(r, vals[4] == e && vals[5] == f && vals[6] == g && vals[7] == h); case 4: REPORTER_ASSERT(r, vals[2] == c && vals[3] == d); case 2: REPORTER_ASSERT(r, vals[0] == a && vals[1] == b); } switch (N) { case 8: REPORTER_ASSERT(r, v.template kth<4>() == e && v.template kth<5>() == f && v.template kth<6>() == g && v.template kth<7>() == h); case 4: REPORTER_ASSERT(r, v.template kth<2>() == c && v.template kth<3>() == d); case 2: REPORTER_ASSERT(r, v.template kth<0>() == a && v.template kth<1>() == b); } }; T vals[] = { 1,2,3,4,5,6,7,8 }; SkNi a = SkNi::Load(vals), b(a), c = a; SkNi d; d = a; assert_eq(a, 1,2,3,4,5,6,7,8); assert_eq(b, 1,2,3,4,5,6,7,8); assert_eq(c, 1,2,3,4,5,6,7,8); assert_eq(d, 1,2,3,4,5,6,7,8); assert_eq(a+a, 2,4,6,8,10,12,14,16); assert_eq(a*a, 1,4,9,16,25,36,49,64); assert_eq(a*a-a, 0,2,6,12,20,30,42,56); assert_eq(a >> 2, 0,0,0,1,1,1,1,2); assert_eq(a << 1, 2,4,6,8,10,12,14,16); REPORTER_ASSERT(r, a.template kth<1>() == 2); } DEF_TEST(SkNi, r) { test_Ni<2, uint16_t>(r); test_Ni<4, uint16_t>(r); test_Ni<8, uint16_t>(r); test_Ni<2, int>(r); test_Ni<4, int>(r); test_Ni<8, int>(r); } DEF_TEST(SkNi_min_lt, r) { // Exhaustively check the 8x8 bit space. for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { Sk16b aw(a), bw(b); REPORTER_ASSERT(r, Sk16b::Min(aw, bw).kth<0>() == SkTMin(a, b)); REPORTER_ASSERT(r, !(aw < bw).kth<0>() == !(a < b)); }} // Exhausting the 16x16 bit space is kind of slow, so only do that in release builds. #ifdef SK_DEBUG SkRandom rand; for (int i = 0; i < (1<<16); i++) { uint16_t a = rand.nextU() >> 16, b = rand.nextU() >> 16; REPORTER_ASSERT(r, Sk8h::Min(Sk8h(a), Sk8h(b)).kth<0>() == SkTMin(a, b)); } #else for (int a = 0; a < (1<<16); a++) { for (int b = 0; b < (1<<16); b++) { REPORTER_ASSERT(r, Sk8h::Min(Sk8h(a), Sk8h(b)).kth<0>() == SkTMin(a, b)); }} #endif } DEF_TEST(SkNi_saturatedAdd, r) { for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { int exact = a+b; if (exact > 255) { exact = 255; } if (exact < 0) { exact = 0; } REPORTER_ASSERT(r, Sk16b(a).saturatedAdd(Sk16b(b)).kth<0>() == exact); } } } DEF_TEST(Sk4px_muldiv255round, r) { for (int a = 0; a < (1<<8); a++) { for (int b = 0; b < (1<<8); b++) { int exact = (a*b+127)/255; // Duplicate a and b 16x each. auto av = Sk4px::DupAlpha(a), bv = Sk4px::DupAlpha(b); // This way should always be exactly correct. int correct = (av * bv).div255().kth<0>(); REPORTER_ASSERT(r, correct == exact); // We're a bit more flexible on this method: correct for 0 or 255, otherwise off by <=1. int fast = av.approxMulDiv255(bv).kth<0>(); REPORTER_ASSERT(r, fast-exact >= -1 && fast-exact <= 1); if (a == 0 || a == 255 || b == 0 || b == 255) { REPORTER_ASSERT(r, fast == exact); } } } }