/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurImageFilter.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkDashPathEffect.h" #include "SkData.h" #include "SkDecodingImageGenerator.h" #include "SkError.h" #include "SkImageEncoder.h" #include "SkImageGenerator.h" #include "SkPaint.h" #include "SkPicture.h" #include "SkPictureRecorder.h" #include "SkPictureUtils.h" #include "SkRRect.h" #include "SkRandom.h" #include "SkShader.h" #include "SkStream.h" #if SK_SUPPORT_GPU #include "SkSurface.h" #include "GrContextFactory.h" #include "GrPictureUtils.h" #endif #include "Test.h" #include "SkLumaColorFilter.h" #include "SkColorFilterImageFilter.h" static const int gColorScale = 30; static const int gColorOffset = 60; static void make_bm(SkBitmap* bm, int w, int h, SkColor color, bool immutable) { bm->allocN32Pixels(w, h); bm->eraseColor(color); if (immutable) { bm->setImmutable(); } } static void make_checkerboard(SkBitmap* bm, int w, int h, bool immutable) { SkASSERT(w % 2 == 0); SkASSERT(h % 2 == 0); bm->allocPixels(SkImageInfo::Make(w, h, kAlpha_8_SkColorType, kPremul_SkAlphaType)); SkAutoLockPixels lock(*bm); for (int y = 0; y < h; y += 2) { uint8_t* s = bm->getAddr8(0, y); for (int x = 0; x < w; x += 2) { *s++ = 0xFF; *s++ = 0x00; } s = bm->getAddr8(0, y + 1); for (int x = 0; x < w; x += 2) { *s++ = 0x00; *s++ = 0xFF; } } if (immutable) { bm->setImmutable(); } } static void init_paint(SkPaint* paint, const SkBitmap &bm) { SkShader* shader = SkShader::CreateBitmapShader(bm, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); paint->setShader(shader)->unref(); } typedef void (*DrawBitmapProc)(SkCanvas*, const SkBitmap&, const SkBitmap&, const SkPoint&, SkTDArray* usedPixRefs); static void drawpaint_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); canvas->drawPaint(paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawpoints_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); // draw a rect SkPoint points[5] = { { pos.fX, pos.fY }, { pos.fX + bm.width() - 1, pos.fY }, { pos.fX + bm.width() - 1, pos.fY + bm.height() - 1 }, { pos.fX, pos.fY + bm.height() - 1 }, { pos.fX, pos.fY }, }; canvas->drawPoints(SkCanvas::kPolygon_PointMode, 5, points, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawrect_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); canvas->drawRect(r, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawoval_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); canvas->drawOval(r, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawrrect_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); SkRRect rr; rr.setRectXY(r, SkIntToScalar(bm.width())/4, SkIntToScalar(bm.height())/4); canvas->drawRRect(rr, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawpath_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkPath path; path.lineTo(bm.width()/2.0f, SkIntToScalar(bm.height())); path.lineTo(SkIntToScalar(bm.width()), 0); path.close(); path.offset(pos.fX, pos.fY); canvas->drawPath(path, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawbitmap_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { canvas->drawBitmap(bm, pos.fX, pos.fY, NULL); *usedPixRefs->append() = bm.pixelRef(); } static void drawbitmap_withshader_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); // The bitmap in the paint is ignored unless we're drawing an A8 bitmap canvas->drawBitmap(altBM, pos.fX, pos.fY, &paint); *usedPixRefs->append() = bm.pixelRef(); *usedPixRefs->append() = altBM.pixelRef(); } static void drawsprite_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { const SkMatrix& ctm = canvas->getTotalMatrix(); SkPoint p(pos); ctm.mapPoints(&p, 1); canvas->drawSprite(bm, (int)p.fX, (int)p.fY, NULL); *usedPixRefs->append() = bm.pixelRef(); } #if 0 // Although specifiable, this case doesn't seem to make sense (i.e., the // bitmap in the shader is never used). static void drawsprite_withshader_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); const SkMatrix& ctm = canvas->getTotalMatrix(); SkPoint p(pos); ctm.mapPoints(&p, 1); canvas->drawSprite(altBM, (int)p.fX, (int)p.fY, &paint); *usedPixRefs->append() = bm.pixelRef(); *usedPixRefs->append() = altBM.pixelRef(); } #endif static void drawbitmaprect_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); canvas->drawBitmapRectToRect(bm, NULL, r, NULL); *usedPixRefs->append() = bm.pixelRef(); } static void drawbitmaprect_withshader_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); // The bitmap in the paint is ignored unless we're drawing an A8 bitmap canvas->drawBitmapRectToRect(altBM, NULL, r, &paint); *usedPixRefs->append() = bm.pixelRef(); *usedPixRefs->append() = altBM.pixelRef(); } static void drawtext_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); paint.setTextSize(SkIntToScalar(1.5*bm.width())); canvas->drawText("0", 1, pos.fX, pos.fY+bm.width(), paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawpostext_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); paint.setTextSize(SkIntToScalar(1.5*bm.width())); SkPoint point = { pos.fX, pos.fY + bm.height() }; canvas->drawPosText("O", 1, &point, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawtextonpath_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); paint.setTextSize(SkIntToScalar(1.5*bm.width())); SkPath path; path.lineTo(SkIntToScalar(bm.width()), 0); path.offset(pos.fX, pos.fY+bm.height()); canvas->drawTextOnPath("O", 1, path, NULL, paint); *usedPixRefs->append() = bm.pixelRef(); } static void drawverts_proc(SkCanvas* canvas, const SkBitmap& bm, const SkBitmap& altBM, const SkPoint& pos, SkTDArray* usedPixRefs) { SkPaint paint; init_paint(&paint, bm); SkPoint verts[4] = { { pos.fX, pos.fY }, { pos.fX + bm.width(), pos.fY }, { pos.fX + bm.width(), pos.fY + bm.height() }, { pos.fX, pos.fY + bm.height() } }; SkPoint texs[4] = { { 0, 0 }, { SkIntToScalar(bm.width()), 0 }, { SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }, { 0, SkIntToScalar(bm.height()) } }; uint16_t indices[6] = { 0, 1, 2, 0, 2, 3 }; canvas->drawVertices(SkCanvas::kTriangles_VertexMode, 4, verts, texs, NULL, NULL, indices, 6, paint); *usedPixRefs->append() = bm.pixelRef(); } // Return a picture with the bitmaps drawn at the specified positions. static SkPicture* record_bitmaps(const SkBitmap bm[], const SkPoint pos[], SkTDArray analytic[], int count, DrawBitmapProc proc) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(1000, 1000); for (int i = 0; i < count; ++i) { analytic[i].rewind(); canvas->save(); SkRect clipRect = SkRect::MakeXYWH(pos[i].fX, pos[i].fY, SkIntToScalar(bm[i].width()), SkIntToScalar(bm[i].height())); canvas->clipRect(clipRect, SkRegion::kIntersect_Op); proc(canvas, bm[i], bm[count+i], pos[i], &analytic[i]); canvas->restore(); } return recorder.endRecording(); } static void rand_rect(SkRect* rect, SkRandom& rand, SkScalar W, SkScalar H) { rect->fLeft = rand.nextRangeScalar(-W, 2*W); rect->fTop = rand.nextRangeScalar(-H, 2*H); rect->fRight = rect->fLeft + rand.nextRangeScalar(0, W); rect->fBottom = rect->fTop + rand.nextRangeScalar(0, H); // we integralize rect to make our tests more predictable, since Gather is // a little sloppy. SkIRect ir; rect->round(&ir); rect->set(ir); } static void draw(SkPicture* pic, int width, int height, SkBitmap* result) { make_bm(result, width, height, SK_ColorBLACK, false); SkCanvas canvas(*result); canvas.drawPicture(pic); } template int find_index(const T* array, T elem, int count) { for (int i = 0; i < count; ++i) { if (array[i] == elem) { return i; } } return -1; } // Return true if 'ref' is found in array[] static bool find(SkPixelRef const * const * array, SkPixelRef const * ref, int count) { return find_index(array, ref, count) >= 0; } // Look at each pixel that is inside 'subset', and if its color appears in // colors[], find the corresponding value in refs[] and append that ref into // array, skipping duplicates of the same value. // Note that gathering pixelRefs from rendered colors suffers from the problem // that multiple simultaneous textures (e.g., A8 for alpha and 8888 for color) // isn't easy to reconstruct. static void gather_from_image(const SkBitmap& bm, SkPixelRef* const refs[], int count, SkTDArray* array, const SkRect& subset) { SkIRect ir; subset.roundOut(&ir); if (!ir.intersect(0, 0, bm.width()-1, bm.height()-1)) { return; } // Since we only want to return unique values in array, when we scan we just // set a bit for each index'd color found. In practice we only have a few // distinct colors, so we just use an int's bits as our array. Hence the // assert that count <= number-of-bits-in-our-int. SkASSERT((unsigned)count <= 32); uint32_t bitarray = 0; SkAutoLockPixels alp(bm); for (int y = ir.fTop; y < ir.fBottom; ++y) { for (int x = ir.fLeft; x < ir.fRight; ++x) { SkPMColor pmc = *bm.getAddr32(x, y); // the only good case where the color is not found would be if // the color is transparent, meaning no bitmap was drawn in that // pixel. if (pmc) { uint32_t index = SkGetPackedR32(pmc); SkASSERT(SkGetPackedG32(pmc) == index); SkASSERT(SkGetPackedB32(pmc) == index); if (0 == index) { continue; // background color } SkASSERT(0 == (index - gColorOffset) % gColorScale); index = (index - gColorOffset) / gColorScale; SkASSERT(static_cast(index) < count); bitarray |= 1 << index; } } } for (int i = 0; i < count; ++i) { if (bitarray & (1 << i)) { *array->append() = refs[i]; } } } static void gather_from_analytic(const SkPoint pos[], SkScalar w, SkScalar h, const SkTDArray analytic[], int count, SkTDArray* result, const SkRect& subset) { for (int i = 0; i < count; ++i) { SkRect rect = SkRect::MakeXYWH(pos[i].fX, pos[i].fY, w, h); if (SkRect::Intersects(subset, rect)) { result->append(analytic[i].count(), analytic[i].begin()); } } } static const struct { const DrawBitmapProc proc; const char* const desc; } gProcs[] = { {drawpaint_proc, "drawpaint"}, {drawpoints_proc, "drawpoints"}, {drawrect_proc, "drawrect"}, {drawoval_proc, "drawoval"}, {drawrrect_proc, "drawrrect"}, {drawpath_proc, "drawpath"}, {drawbitmap_proc, "drawbitmap"}, {drawbitmap_withshader_proc, "drawbitmap_withshader"}, {drawsprite_proc, "drawsprite"}, #if 0 {drawsprite_withshader_proc, "drawsprite_withshader"}, #endif {drawbitmaprect_proc, "drawbitmaprect"}, {drawbitmaprect_withshader_proc, "drawbitmaprect_withshader"}, {drawtext_proc, "drawtext"}, {drawpostext_proc, "drawpostext"}, {drawtextonpath_proc, "drawtextonpath"}, {drawverts_proc, "drawverts"}, }; static void create_textures(SkBitmap* bm, SkPixelRef** refs, int num, int w, int h) { // Our convention is that the color components contain an encoding of // the index of their corresponding bitmap/pixelref. (0,0,0,0) is // reserved for the background for (int i = 0; i < num; ++i) { make_bm(&bm[i], w, h, SkColorSetARGB(0xFF, gColorScale*i+gColorOffset, gColorScale*i+gColorOffset, gColorScale*i+gColorOffset), true); refs[i] = bm[i].pixelRef(); } // The A8 alternate bitmaps are all BW checkerboards for (int i = 0; i < num; ++i) { make_checkerboard(&bm[num+i], w, h, true); refs[num+i] = bm[num+i].pixelRef(); } } static void test_gatherpixelrefs(skiatest::Reporter* reporter) { const int IW = 32; const int IH = IW; const SkScalar W = SkIntToScalar(IW); const SkScalar H = W; static const int N = 4; SkBitmap bm[2*N]; SkPixelRef* refs[2*N]; SkTDArray analytic[N]; const SkPoint pos[N] = { { 0, 0 }, { W, 0 }, { 0, H }, { W, H } }; create_textures(bm, refs, N, IW, IH); SkRandom rand; for (size_t k = 0; k < SK_ARRAY_COUNT(gProcs); ++k) { SkAutoTUnref pic( record_bitmaps(bm, pos, analytic, N, gProcs[k].proc)); REPORTER_ASSERT(reporter, pic->willPlayBackBitmaps() || N == 0); // quick check for a small piece of each quadrant, which should just // contain 1 or 2 bitmaps. for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) { SkRect r; r.set(2, 2, W - 2, H - 2); r.offset(pos[i].fX, pos[i].fY); SkAutoDataUnref data(SkPictureUtils::GatherPixelRefs(pic, r)); if (!data) { ERRORF(reporter, "SkPictureUtils::GatherPixelRefs returned " "NULL for %s.", gProcs[k].desc); continue; } SkPixelRef** gatheredRefs = (SkPixelRef**)data->data(); int count = static_cast(data->size() / sizeof(SkPixelRef*)); REPORTER_ASSERT(reporter, 1 == count || 2 == count); if (1 == count) { REPORTER_ASSERT(reporter, gatheredRefs[0] == refs[i]); } else if (2 == count) { REPORTER_ASSERT(reporter, (gatheredRefs[0] == refs[i] && gatheredRefs[1] == refs[i+N]) || (gatheredRefs[1] == refs[i] && gatheredRefs[0] == refs[i+N])); } } SkBitmap image; draw(pic, 2*IW, 2*IH, &image); // Test a bunch of random (mostly) rects, and compare the gather results // with a deduced list of refs by looking at the colors drawn. for (int j = 0; j < 100; ++j) { SkRect r; rand_rect(&r, rand, 2*W, 2*H); SkTDArray fromImage; gather_from_image(image, refs, N, &fromImage, r); SkTDArray fromAnalytic; gather_from_analytic(pos, W, H, analytic, N, &fromAnalytic, r); SkData* data = SkPictureUtils::GatherPixelRefs(pic, r); size_t dataSize = data ? data->size() : 0; int gatherCount = static_cast(dataSize / sizeof(SkPixelRef*)); SkASSERT(gatherCount * sizeof(SkPixelRef*) == dataSize); SkPixelRef** gatherRefs = data ? (SkPixelRef**)(data->data()) : NULL; SkAutoDataUnref adu(data); // Everything that we saw drawn should appear in the analytic list // but the analytic list may contain some pixelRefs that were not // seen in the image (e.g., A8 textures used as masks) for (int i = 0; i < fromImage.count(); ++i) { if (-1 == fromAnalytic.find(fromImage[i])) { ERRORF(reporter, "PixelRef missing %d %s", i, gProcs[k].desc); } } /* * GatherPixelRefs is conservative, so it can return more bitmaps * than are strictly required. Thus our check here is only that * Gather didn't miss any that we actually needed. Even that isn't * a strict requirement on Gather, which is meant to be quick and * only mostly-correct, but at the moment this test should work. */ for (int i = 0; i < fromAnalytic.count(); ++i) { bool found = find(gatherRefs, fromAnalytic[i], gatherCount); if (!found) { ERRORF(reporter, "PixelRef missing %d %s", i, gProcs[k].desc); } #if 0 // enable this block of code to debug failures, as it will rerun // the case that failed. if (!found) { SkData* data = SkPictureUtils::GatherPixelRefs(pic, r); size_t dataSize = data ? data->size() : 0; } #endif } } } } static void test_gatherpixelrefsandrects(skiatest::Reporter* reporter) { const int IW = 32; const int IH = IW; const SkScalar W = SkIntToScalar(IW); const SkScalar H = W; static const int N = 4; SkBitmap bm[2*N]; SkPixelRef* refs[2*N]; SkTDArray analytic[N]; const SkPoint pos[N] = { { 0, 0 }, { W, 0 }, { 0, H }, { W, H } }; create_textures(bm, refs, N, IW, IH); SkRandom rand; for (size_t k = 0; k < SK_ARRAY_COUNT(gProcs); ++k) { SkAutoTUnref pic( record_bitmaps(bm, pos, analytic, N, gProcs[k].proc)); REPORTER_ASSERT(reporter, pic->willPlayBackBitmaps() || N == 0); SkAutoTUnref prCont( new SkPictureUtils::SkPixelRefsAndRectsList); SkPictureUtils::GatherPixelRefsAndRects(pic, prCont); // quick check for a small piece of each quadrant, which should just // contain 1 or 2 bitmaps. for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) { SkRect r; r.set(2, 2, W - 2, H - 2); r.offset(pos[i].fX, pos[i].fY); SkTDArray gatheredRefs; prCont->query(r, &gatheredRefs); int count = gatheredRefs.count(); REPORTER_ASSERT(reporter, 1 == count || 2 == count); if (1 == count) { REPORTER_ASSERT(reporter, gatheredRefs[0] == refs[i]); } else if (2 == count) { REPORTER_ASSERT(reporter, (gatheredRefs[0] == refs[i] && gatheredRefs[1] == refs[i+N]) || (gatheredRefs[1] == refs[i] && gatheredRefs[0] == refs[i+N])); } } SkBitmap image; draw(pic, 2*IW, 2*IH, &image); // Test a bunch of random (mostly) rects, and compare the gather results // with the analytic results and the pixel refs seen in a rendering. for (int j = 0; j < 100; ++j) { SkRect r; rand_rect(&r, rand, 2*W, 2*H); SkTDArray fromImage; gather_from_image(image, refs, N, &fromImage, r); SkTDArray fromAnalytic; gather_from_analytic(pos, W, H, analytic, N, &fromAnalytic, r); SkTDArray gatheredRefs; prCont->query(r, &gatheredRefs); // Everything that we saw drawn should appear in the analytic list // but the analytic list may contain some pixelRefs that were not // seen in the image (e.g., A8 textures used as masks) for (int i = 0; i < fromImage.count(); ++i) { REPORTER_ASSERT(reporter, -1 != fromAnalytic.find(fromImage[i])); } // Everything in the analytic list should appear in the gathered // list. for (int i = 0; i < fromAnalytic.count(); ++i) { REPORTER_ASSERT(reporter, -1 != gatheredRefs.find(fromAnalytic[i])); } } } } #ifdef SK_DEBUG // Ensure that deleting an empty SkPicture does not assert. Asserts only fire // in debug mode, so only run in debug mode. static void test_deleting_empty_picture() { SkPictureRecorder recorder; // Creates an SkPictureRecord recorder.beginRecording(0, 0); // Turns that into an SkPicture SkAutoTUnref picture(recorder.endRecording()); // Ceates a new SkPictureRecord recorder.beginRecording(0, 0); } // Ensure that serializing an empty picture does not assert. Likewise only runs in debug mode. static void test_serializing_empty_picture() { SkPictureRecorder recorder; recorder.beginRecording(0, 0); SkAutoTUnref picture(recorder.endRecording()); SkDynamicMemoryWStream stream; picture->serialize(&stream); } #endif static void rand_op(SkCanvas* canvas, SkRandom& rand) { SkPaint paint; SkRect rect = SkRect::MakeWH(50, 50); SkScalar unit = rand.nextUScalar1(); if (unit <= 0.3) { // SkDebugf("save\n"); canvas->save(); } else if (unit <= 0.6) { // SkDebugf("restore\n"); canvas->restore(); } else if (unit <= 0.9) { // SkDebugf("clip\n"); canvas->clipRect(rect); } else { // SkDebugf("draw\n"); canvas->drawPaint(paint); } } #if SK_SUPPORT_GPU static void test_gpu_veto(skiatest::Reporter* reporter) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(100, 100); { SkPath path; path.moveTo(0, 0); path.lineTo(50, 50); SkScalar intervals[] = { 1.0f, 1.0f }; SkAutoTUnref dash(SkDashPathEffect::Create(intervals, 2, 0)); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setPathEffect(dash); canvas->drawPath(path, paint); } SkAutoTUnref picture(recorder.endRecording()); // path effects currently render an SkPicture undesireable for GPU rendering const char *reason = NULL; REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL, &reason)); REPORTER_ASSERT(reporter, NULL != reason); canvas = recorder.beginRecording(100, 100); { SkPath path; path.moveTo(0, 0); path.lineTo(0, 50); path.lineTo(25, 25); path.lineTo(50, 50); path.lineTo(50, 0); path.close(); REPORTER_ASSERT(reporter, !path.isConvex()); SkPaint paint; paint.setAntiAlias(true); for (int i = 0; i < 50; ++i) { canvas->drawPath(path, paint); } } picture.reset(recorder.endRecording()); // A lot of AA concave paths currently render an SkPicture undesireable for GPU rendering REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL)); canvas = recorder.beginRecording(100, 100); { SkPath path; path.moveTo(0, 0); path.lineTo(0, 50); path.lineTo(25, 25); path.lineTo(50, 50); path.lineTo(50, 0); path.close(); REPORTER_ASSERT(reporter, !path.isConvex()); SkPaint paint; paint.setAntiAlias(true); paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(0); for (int i = 0; i < 50; ++i) { canvas->drawPath(path, paint); } } picture.reset(recorder.endRecording()); // hairline stroked AA concave paths are fine for GPU rendering REPORTER_ASSERT(reporter, picture->suitableForGpuRasterization(NULL)); } static void test_gpu_picture_optimization(skiatest::Reporter* reporter, GrContextFactory* factory) { for (int i= 0; i < GrContextFactory::kGLContextTypeCnt; ++i) { GrContextFactory::GLContextType glCtxType = (GrContextFactory::GLContextType) i; if (!GrContextFactory::IsRenderingGLContext(glCtxType)) { continue; } GrContext* context = factory->get(glCtxType); if (NULL == context) { continue; } static const int kWidth = 100; static const int kHeight = 100; SkAutoTUnref pict; // create a picture with the structure: // 1) // SaveLayer // Restore // 2) // SaveLayer // Translate // SaveLayer w/ bound // Restore // Restore // 3) // SaveLayer w/ copyable paint // Restore // 4) // SaveLayer w/ non-copyable paint // Restore { SkPictureRecorder recorder; SkCanvas* c = recorder.beginRecording(kWidth, kHeight); // 1) c->saveLayer(NULL, NULL); c->restore(); // 2) c->saveLayer(NULL, NULL); c->translate(kWidth/2, kHeight/2); SkRect r = SkRect::MakeXYWH(0, 0, kWidth/2, kHeight/2); c->saveLayer(&r, NULL); c->restore(); c->restore(); // 3) { SkPaint p; p.setColor(SK_ColorRED); c->saveLayer(NULL, &p); c->restore(); } // 4) // TODO: this case will need to be removed once the paint's are immutable { SkPaint p; SkAutoTUnref cf(SkLumaColorFilter::Create()); p.setImageFilter(SkColorFilterImageFilter::Create(cf.get()))->unref(); c->saveLayer(NULL, &p); c->restore(); } pict.reset(recorder.endRecording()); } // Now test out the SaveLayer extraction { SkImageInfo info = SkImageInfo::MakeN32Premul(kWidth, kHeight); SkAutoTUnref surface(SkSurface::NewScratchRenderTarget(context, info)); SkCanvas* canvas = surface->getCanvas(); canvas->EXPERIMENTAL_optimize(pict); SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey(); const SkPicture::AccelData* data = pict->EXPERIMENTAL_getAccelData(key); REPORTER_ASSERT(reporter, NULL != data); const GPUAccelData *gpuData = static_cast(data); REPORTER_ASSERT(reporter, 5 == gpuData->numSaveLayers()); const GPUAccelData::SaveLayerInfo& info0 = gpuData->saveLayerInfo(0); // The parent/child layer appear in reverse order const GPUAccelData::SaveLayerInfo& info1 = gpuData->saveLayerInfo(2); const GPUAccelData::SaveLayerInfo& info2 = gpuData->saveLayerInfo(1); const GPUAccelData::SaveLayerInfo& info3 = gpuData->saveLayerInfo(3); // const GPUAccelData::SaveLayerInfo& info4 = gpuData->saveLayerInfo(4); REPORTER_ASSERT(reporter, info0.fValid); REPORTER_ASSERT(reporter, kWidth == info0.fSize.fWidth && kHeight == info0.fSize.fHeight); REPORTER_ASSERT(reporter, info0.fCTM.isIdentity()); REPORTER_ASSERT(reporter, 0 == info0.fOffset.fX && 0 == info0.fOffset.fY); REPORTER_ASSERT(reporter, NULL != info0.fPaint); REPORTER_ASSERT(reporter, !info0.fIsNested && !info0.fHasNestedLayers); REPORTER_ASSERT(reporter, info1.fValid); REPORTER_ASSERT(reporter, kWidth == info1.fSize.fWidth && kHeight == info1.fSize.fHeight); REPORTER_ASSERT(reporter, info1.fCTM.isIdentity()); REPORTER_ASSERT(reporter, 0 == info1.fOffset.fX && 0 == info1.fOffset.fY); REPORTER_ASSERT(reporter, NULL != info1.fPaint); REPORTER_ASSERT(reporter, !info1.fIsNested && info1.fHasNestedLayers); // has a nested SL REPORTER_ASSERT(reporter, info2.fValid); REPORTER_ASSERT(reporter, kWidth/2 == info2.fSize.fWidth && kHeight/2 == info2.fSize.fHeight); // bound reduces size REPORTER_ASSERT(reporter, info2.fCTM.isIdentity()); // translated REPORTER_ASSERT(reporter, kWidth/2 == info2.fOffset.fX && kHeight/2 == info2.fOffset.fY); REPORTER_ASSERT(reporter, NULL != info1.fPaint); REPORTER_ASSERT(reporter, info2.fIsNested && !info2.fHasNestedLayers); // is nested REPORTER_ASSERT(reporter, info3.fValid); REPORTER_ASSERT(reporter, kWidth == info3.fSize.fWidth && kHeight == info3.fSize.fHeight); REPORTER_ASSERT(reporter, info3.fCTM.isIdentity()); REPORTER_ASSERT(reporter, 0 == info3.fOffset.fX && 0 == info3.fOffset.fY); REPORTER_ASSERT(reporter, NULL != info3.fPaint); REPORTER_ASSERT(reporter, !info3.fIsNested && !info3.fHasNestedLayers); #if 0 // needs more though for GrGatherCanvas REPORTER_ASSERT(reporter, !info4.fValid); // paint is/was uncopyable REPORTER_ASSERT(reporter, kWidth == info4.fSize.fWidth && kHeight == info4.fSize.fHeight); REPORTER_ASSERT(reporter, 0 == info4.fOffset.fX && 0 == info4.fOffset.fY); REPORTER_ASSERT(reporter, info4.fCTM.isIdentity()); REPORTER_ASSERT(reporter, NULL == info4.fPaint); // paint is/was uncopyable REPORTER_ASSERT(reporter, !info4.fIsNested && !info4.fHasNestedLayers); #endif } } } #endif static void set_canvas_to_save_count_4(SkCanvas* canvas) { canvas->restoreToCount(1); canvas->save(); canvas->save(); canvas->save(); } /** * A canvas that records the number of saves, saveLayers and restores. */ class SaveCountingCanvas : public SkCanvas { public: SaveCountingCanvas(int width, int height) : INHERITED(width, height) , fSaveCount(0) , fSaveLayerCount(0) , fRestoreCount(0){ } virtual SaveLayerStrategy willSaveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags flags) SK_OVERRIDE { ++fSaveLayerCount; return this->INHERITED::willSaveLayer(bounds, paint, flags); } virtual void willSave() SK_OVERRIDE { ++fSaveCount; this->INHERITED::willSave(); } virtual void willRestore() SK_OVERRIDE { ++fRestoreCount; this->INHERITED::willRestore(); } unsigned int getSaveCount() const { return fSaveCount; } unsigned int getSaveLayerCount() const { return fSaveLayerCount; } unsigned int getRestoreCount() const { return fRestoreCount; } private: unsigned int fSaveCount; unsigned int fSaveLayerCount; unsigned int fRestoreCount; typedef SkCanvas INHERITED; }; void check_save_state(skiatest::Reporter* reporter, SkPicture* picture, unsigned int numSaves, unsigned int numSaveLayers, unsigned int numRestores) { SaveCountingCanvas canvas(picture->width(), picture->height()); picture->draw(&canvas); REPORTER_ASSERT(reporter, numSaves == canvas.getSaveCount()); REPORTER_ASSERT(reporter, numSaveLayers == canvas.getSaveLayerCount()); REPORTER_ASSERT(reporter, numRestores == canvas.getRestoreCount()); } // This class exists so SkPicture can friend it and give it access to // the 'partialReplay' method. class SkPictureRecorderReplayTester { public: static SkPicture* Copy(SkPictureRecorder* recorder) { SkPictureRecorder recorder2; SkCanvas* canvas = recorder2.beginRecording(10, 10); recorder->partialReplay(canvas); return recorder2.endRecording(); } }; static void create_imbalance(SkCanvas* canvas) { SkRect clipRect = SkRect::MakeWH(2, 2); SkRect drawRect = SkRect::MakeWH(10, 10); canvas->save(); canvas->clipRect(clipRect, SkRegion::kReplace_Op); canvas->translate(1.0f, 1.0f); SkPaint p; p.setColor(SK_ColorGREEN); canvas->drawRect(drawRect, p); // no restore } // This tests that replaying a potentially unbalanced picture into a canvas // doesn't affect the canvas' save count or matrix/clip state. static void check_balance(skiatest::Reporter* reporter, SkPicture* picture) { SkBitmap bm; bm.allocN32Pixels(4, 3); SkCanvas canvas(bm); int beforeSaveCount = canvas.getSaveCount(); SkMatrix beforeMatrix = canvas.getTotalMatrix(); SkRect beforeClip; canvas.getClipBounds(&beforeClip); canvas.drawPicture(picture); REPORTER_ASSERT(reporter, beforeSaveCount == canvas.getSaveCount()); REPORTER_ASSERT(reporter, beforeMatrix == canvas.getTotalMatrix()); SkRect afterClip; canvas.getClipBounds(&afterClip); REPORTER_ASSERT(reporter, afterClip == beforeClip); } // Test out SkPictureRecorder::partialReplay DEF_TEST(PictureRecorder_replay, reporter) { // check save/saveLayer state { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->saveLayer(NULL, NULL); SkAutoTUnref copy(SkPictureRecorderReplayTester::Copy(&recorder)); // The extra save and restore comes from the Copy process. check_save_state(reporter, copy, 2, 1, 3); canvas->saveLayer(NULL, NULL); SkAutoTUnref final(recorder.endRecording()); check_save_state(reporter, final, 1, 2, 3); // The copy shouldn't pick up any operations added after it was made check_save_state(reporter, copy, 2, 1, 3); } // (partially) check leakage of draw ops { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); SkRect r = SkRect::MakeWH(5, 5); SkPaint p; canvas->drawRect(r, p); SkAutoTUnref copy(SkPictureRecorderReplayTester::Copy(&recorder)); REPORTER_ASSERT(reporter, !copy->willPlayBackBitmaps()); SkBitmap bm; make_bm(&bm, 10, 10, SK_ColorRED, true); r.offset(5.0f, 5.0f); canvas->drawBitmapRectToRect(bm, NULL, r); SkAutoTUnref final(recorder.endRecording()); REPORTER_ASSERT(reporter, final->willPlayBackBitmaps()); REPORTER_ASSERT(reporter, copy->uniqueID() != final->uniqueID()); // The snapshot shouldn't pick up any operations added after it was made REPORTER_ASSERT(reporter, !copy->willPlayBackBitmaps()); } // Recreate the Android partialReplay test case { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(4, 3, NULL, 0); create_imbalance(canvas); int expectedSaveCount = canvas->getSaveCount(); SkAutoTUnref copy(SkPictureRecorderReplayTester::Copy(&recorder)); check_balance(reporter, copy); REPORTER_ASSERT(reporter, expectedSaveCount = canvas->getSaveCount()); // End the recording of source to test the picture finalization // process isn't complicated by the partialReplay step SkAutoTUnref final(recorder.endRecording()); } } static void test_unbalanced_save_restores(skiatest::Reporter* reporter) { SkCanvas testCanvas(100, 100); set_canvas_to_save_count_4(&testCanvas); REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount()); SkPaint paint; SkRect rect = SkRect::MakeLTRB(-10000000, -10000000, 10000000, 10000000); SkPictureRecorder recorder; { // Create picture with 2 unbalanced saves SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->save(); canvas->translate(10, 10); canvas->drawRect(rect, paint); canvas->save(); canvas->translate(10, 10); canvas->drawRect(rect, paint); SkAutoTUnref extraSavePicture(recorder.endRecording()); testCanvas.drawPicture(extraSavePicture); REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount()); } set_canvas_to_save_count_4(&testCanvas); { // Create picture with 2 unbalanced restores SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->save(); canvas->translate(10, 10); canvas->drawRect(rect, paint); canvas->save(); canvas->translate(10, 10); canvas->drawRect(rect, paint); canvas->restore(); canvas->restore(); canvas->restore(); canvas->restore(); SkAutoTUnref extraRestorePicture(recorder.endRecording()); testCanvas.drawPicture(extraRestorePicture); REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount()); } set_canvas_to_save_count_4(&testCanvas); { SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->translate(10, 10); canvas->drawRect(rect, paint); SkAutoTUnref noSavePicture(recorder.endRecording()); testCanvas.drawPicture(noSavePicture); REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount()); REPORTER_ASSERT(reporter, testCanvas.getTotalMatrix().isIdentity()); } } static void test_peephole() { SkRandom rand; SkPictureRecorder recorder; for (int j = 0; j < 100; j++) { SkRandom rand2(rand); // remember the seed SkCanvas* canvas = recorder.beginRecording(100, 100); for (int i = 0; i < 1000; ++i) { rand_op(canvas, rand); } SkAutoTUnref picture(recorder.endRecording()); rand = rand2; } { SkCanvas* canvas = recorder.beginRecording(100, 100); SkRect rect = SkRect::MakeWH(50, 50); for (int i = 0; i < 100; ++i) { canvas->save(); } while (canvas->getSaveCount() > 1) { canvas->clipRect(rect); canvas->restore(); } SkAutoTUnref picture(recorder.endRecording()); } } #ifndef SK_DEBUG // Only test this is in release mode. We deliberately crash in debug mode, since a valid caller // should never do this. static void test_bad_bitmap() { // This bitmap has a width and height but no pixels. As a result, attempting to record it will // fail. SkBitmap bm; bm.setInfo(SkImageInfo::MakeN32Premul(100, 100)); SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(100, 100); recordingCanvas->drawBitmap(bm, 0, 0); SkAutoTUnref picture(recorder.endRecording()); SkCanvas canvas; canvas.drawPicture(picture); } #endif static SkData* encode_bitmap_to_data(size_t*, const SkBitmap& bm) { return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100); } static SkData* serialized_picture_from_bitmap(const SkBitmap& bitmap) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(bitmap.width(), bitmap.height()); canvas->drawBitmap(bitmap, 0, 0); SkAutoTUnref picture(recorder.endRecording()); SkDynamicMemoryWStream wStream; picture->serialize(&wStream, &encode_bitmap_to_data); return wStream.copyToData(); } struct ErrorContext { int fErrors; skiatest::Reporter* fReporter; }; static void assert_one_parse_error_cb(SkError error, void* context) { ErrorContext* errorContext = static_cast(context); errorContext->fErrors++; // This test only expects one error, and that is a kParseError. If there are others, // there is some unknown problem. REPORTER_ASSERT_MESSAGE(errorContext->fReporter, 1 == errorContext->fErrors, "This threw more errors than expected."); REPORTER_ASSERT_MESSAGE(errorContext->fReporter, kParseError_SkError == error, SkGetLastErrorString()); } static void test_bitmap_with_encoded_data(skiatest::Reporter* reporter) { // Create a bitmap that will be encoded. SkBitmap original; make_bm(&original, 100, 100, SK_ColorBLUE, true); SkDynamicMemoryWStream wStream; if (!SkImageEncoder::EncodeStream(&wStream, original, SkImageEncoder::kPNG_Type, 100)) { return; } SkAutoDataUnref data(wStream.copyToData()); SkBitmap bm; bool installSuccess = SkInstallDiscardablePixelRef( SkDecodingImageGenerator::Create(data, SkDecodingImageGenerator::Options()), &bm); REPORTER_ASSERT(reporter, installSuccess); // Write both bitmaps to pictures, and ensure that the resulting data streams are the same. // Flattening original will follow the old path of performing an encode, while flattening bm // will use the already encoded data. SkAutoDataUnref picture1(serialized_picture_from_bitmap(original)); SkAutoDataUnref picture2(serialized_picture_from_bitmap(bm)); REPORTER_ASSERT(reporter, picture1->equals(picture2)); // Now test that a parse error was generated when trying to create a new SkPicture without // providing a function to decode the bitmap. ErrorContext context; context.fErrors = 0; context.fReporter = reporter; SkSetErrorCallback(assert_one_parse_error_cb, &context); SkMemoryStream pictureStream(picture1); SkClearLastError(); SkAutoUnref pictureFromStream(SkPicture::CreateFromStream(&pictureStream, NULL)); REPORTER_ASSERT(reporter, pictureFromStream.get() != NULL); SkClearLastError(); SkSetErrorCallback(NULL, NULL); } static void test_draw_empty(skiatest::Reporter* reporter) { SkBitmap result; make_bm(&result, 2, 2, SK_ColorBLACK, false); SkCanvas canvas(result); { // stock SkPicture SkPictureRecorder recorder; recorder.beginRecording(1, 1); SkAutoTUnref picture(recorder.endRecording()); canvas.drawPicture(picture); } { // tile grid SkTileGridFactory::TileGridInfo gridInfo; gridInfo.fMargin.setEmpty(); gridInfo.fOffset.setZero(); gridInfo.fTileInterval.set(1, 1); SkTileGridFactory factory(gridInfo); SkPictureRecorder recorder; recorder.beginRecording(1, 1, &factory); SkAutoTUnref picture(recorder.endRecording()); canvas.drawPicture(picture); } { // RTree SkRTreeFactory factory; SkPictureRecorder recorder; recorder.beginRecording(1, 1, &factory); SkAutoTUnref picture(recorder.endRecording()); canvas.drawPicture(picture); } { // quad tree SkQuadTreeFactory factory; SkPictureRecorder recorder; recorder.beginRecording(1, 1, &factory); SkAutoTUnref picture(recorder.endRecording()); canvas.drawPicture(picture); } } static void test_clip_bound_opt(skiatest::Reporter* reporter) { // Test for crbug.com/229011 SkRect rect1 = SkRect::MakeXYWH(SkIntToScalar(4), SkIntToScalar(4), SkIntToScalar(2), SkIntToScalar(2)); SkRect rect2 = SkRect::MakeXYWH(SkIntToScalar(7), SkIntToScalar(7), SkIntToScalar(1), SkIntToScalar(1)); SkRect rect3 = SkRect::MakeXYWH(SkIntToScalar(6), SkIntToScalar(6), SkIntToScalar(1), SkIntToScalar(1)); SkPath invPath; invPath.addOval(rect1); invPath.setFillType(SkPath::kInverseEvenOdd_FillType); SkPath path; path.addOval(rect2); SkPath path2; path2.addOval(rect3); SkIRect clipBounds; SkPictureRecorder recorder; // Minimalist test set for 100% code coverage of // SkPictureRecord::updateClipConservativelyUsingBounds { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(invPath, SkRegion::kIntersect_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(invPath, SkRegion::kIntersect_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 7 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(invPath, SkRegion::kUnion_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(path, SkRegion::kDifference_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(path, SkRegion::kReverseDifference_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); // True clip is actually empty in this case, but the best // determination we can make using only bounds as input is that the // clip is included in the bounds of 'path'. REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 7 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(path2, SkRegion::kXOR_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 6 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 6 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } } /** * A canvas that records the number of clip commands. */ class ClipCountingCanvas : public SkCanvas { public: ClipCountingCanvas(int width, int height) : INHERITED(width, height) , fClipCount(0){ } virtual void onClipRect(const SkRect& r, SkRegion::Op op, ClipEdgeStyle edgeStyle) SK_OVERRIDE { fClipCount += 1; this->INHERITED::onClipRect(r, op, edgeStyle); } virtual void onClipRRect(const SkRRect& rrect, SkRegion::Op op, ClipEdgeStyle edgeStyle)SK_OVERRIDE { fClipCount += 1; this->INHERITED::onClipRRect(rrect, op, edgeStyle); } virtual void onClipPath(const SkPath& path, SkRegion::Op op, ClipEdgeStyle edgeStyle) SK_OVERRIDE { fClipCount += 1; this->INHERITED::onClipPath(path, op, edgeStyle); } virtual void onClipRegion(const SkRegion& deviceRgn, SkRegion::Op op) SK_OVERRIDE { fClipCount += 1; this->INHERITED::onClipRegion(deviceRgn, op); } unsigned getClipCount() const { return fClipCount; } private: unsigned fClipCount; typedef SkCanvas INHERITED; }; static void test_clip_expansion(skiatest::Reporter* reporter) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clipRect(SkRect::MakeEmpty(), SkRegion::kReplace_Op); // The following expanding clip should not be skipped. canvas->clipRect(SkRect::MakeXYWH(4, 4, 3, 3), SkRegion::kUnion_Op); // Draw something so the optimizer doesn't just fold the world. SkPaint p; p.setColor(SK_ColorBLUE); canvas->drawPaint(p); SkAutoTUnref picture(recorder.endRecording()); ClipCountingCanvas testCanvas(10, 10); picture->draw(&testCanvas); // Both clips should be present on playback. REPORTER_ASSERT(reporter, testCanvas.getClipCount() == 2); } static void test_hierarchical(skiatest::Reporter* reporter) { SkBitmap bm; make_bm(&bm, 10, 10, SK_ColorRED, true); SkPictureRecorder recorder; recorder.beginRecording(10, 10); SkAutoTUnref childPlain(recorder.endRecording()); REPORTER_ASSERT(reporter, !childPlain->willPlayBackBitmaps()); // 0 recorder.beginRecording(10, 10)->drawBitmap(bm, 0, 0); SkAutoTUnref childWithBitmap(recorder.endRecording()); REPORTER_ASSERT(reporter, childWithBitmap->willPlayBackBitmaps()); // 1 { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->drawPicture(childPlain); SkAutoTUnref parentPP(recorder.endRecording()); REPORTER_ASSERT(reporter, !parentPP->willPlayBackBitmaps()); // 0 } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->drawPicture(childWithBitmap); SkAutoTUnref parentPWB(recorder.endRecording()); REPORTER_ASSERT(reporter, parentPWB->willPlayBackBitmaps()); // 1 } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->drawBitmap(bm, 0, 0); canvas->drawPicture(childPlain); SkAutoTUnref parentWBP(recorder.endRecording()); REPORTER_ASSERT(reporter, parentWBP->willPlayBackBitmaps()); // 1 } { SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->drawBitmap(bm, 0, 0); canvas->drawPicture(childWithBitmap); SkAutoTUnref parentWBWB(recorder.endRecording()); REPORTER_ASSERT(reporter, parentWBWB->willPlayBackBitmaps()); // 2 } } static void test_gen_id(skiatest::Reporter* reporter) { SkPictureRecorder recorder; recorder.beginRecording(0, 0); SkAutoTUnref empty(recorder.endRecording()); // Empty pictures should still have a valid ID REPORTER_ASSERT(reporter, empty->uniqueID() != SK_InvalidGenID); SkCanvas* canvas = recorder.beginRecording(1, 1); canvas->drawARGB(255, 255, 255, 255); SkAutoTUnref hasData(recorder.endRecording()); // picture should have a non-zero id after recording REPORTER_ASSERT(reporter, hasData->uniqueID() != SK_InvalidGenID); // both pictures should have different ids REPORTER_ASSERT(reporter, hasData->uniqueID() != empty->uniqueID()); } DEF_TEST(Picture, reporter) { #ifdef SK_DEBUG test_deleting_empty_picture(); test_serializing_empty_picture(); #else test_bad_bitmap(); #endif test_unbalanced_save_restores(reporter); test_peephole(); #if SK_SUPPORT_GPU test_gpu_veto(reporter); #endif test_gatherpixelrefs(reporter); test_gatherpixelrefsandrects(reporter); test_bitmap_with_encoded_data(reporter); test_draw_empty(reporter); test_clip_bound_opt(reporter); test_clip_expansion(reporter); test_hierarchical(reporter); test_gen_id(reporter); } #if SK_SUPPORT_GPU DEF_GPUTEST(GPUPicture, reporter, factory) { test_gpu_picture_optimization(reporter, factory); } #endif static void draw_bitmaps(const SkBitmap bitmap, SkCanvas* canvas) { const SkPaint paint; const SkRect rect = { 5.0f, 5.0f, 8.0f, 8.0f }; const SkIRect irect = { 2, 2, 3, 3 }; // Don't care what these record, as long as they're legal. canvas->drawBitmap(bitmap, 0.0f, 0.0f, &paint); canvas->drawBitmapRectToRect(bitmap, &rect, rect, &paint, SkCanvas::kNone_DrawBitmapRectFlag); canvas->drawBitmapMatrix(bitmap, SkMatrix::I(), &paint); canvas->drawBitmapNine(bitmap, irect, rect, &paint); canvas->drawSprite(bitmap, 1, 1); } static void test_draw_bitmaps(SkCanvas* canvas) { SkBitmap empty; draw_bitmaps(empty, canvas); empty.setInfo(SkImageInfo::MakeN32Premul(10, 10)); draw_bitmaps(empty, canvas); } DEF_TEST(Picture_EmptyBitmap, r) { SkPictureRecorder recorder; test_draw_bitmaps(recorder.beginRecording(10, 10)); SkAutoTUnref picture(recorder.endRecording()); } DEF_TEST(Canvas_EmptyBitmap, r) { SkBitmap dst; dst.allocN32Pixels(10, 10); SkCanvas canvas(dst); test_draw_bitmaps(&canvas); }